K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Cách làm tương tự bài dưới đây.

Câu hỏi của Nguyễn Bạch Gia Chí - Toán lớp 8 | Học trực tuyến

10 tháng 1 2022

bằng 0 nha bạn

tick cho mình

10 tháng 1 2022

\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)

22 tháng 6 2022

a) A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114.
b) B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152.

13 tháng 7 2022

a) \mathrm{A}=\left[\dfrac{2}{7}\left(\dfrac{1}{4}-\dfrac{1}{3}\right)\right]:\left[\dfrac{2}{7}\left(\dfrac{1}{3}-\dfrac{2}{5}\right)\right]=\left(\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{1}{3}-\dfrac{2}{5}\right)=1 \dfrac{1}{4}.
b) \mathrm{B}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{3}+\dfrac{2}{7}\right)}{\dfrac{1}{5}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)-\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{1}{3}\right)}{\left(\dfrac{1}{5}-\dfrac{1}{3}\right)\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=1 \dfrac{11}{52}

4 tháng 5 2022

1.\(\dfrac{4}{5}\)

2.\(\dfrac{2}{3}\)

3.\(\dfrac{39}{55}\)

4 tháng 5 2022

cách làm

thay b=\(\dfrac{9}{10}\)  vào biểu thức,ta được:

\(\dfrac{1}{3}.\dfrac{9}{10}+\dfrac{2}{9}.\dfrac{9}{10}-\dfrac{9}{10}:\dfrac{9}{4}=\dfrac{9}{10}.\left(\dfrac{1}{3}+\dfrac{2}{9}-\dfrac{9}{4}\right)=\dfrac{9}{10}.\dfrac{-61}{36}=-\dfrac{61}{40}\)

31 tháng 8 2021

undefined

23 tháng 7 2021

Q=...
có thấy đa thức Q ghi j đâu

22 tháng 12 2017

a)Nhận xét

\(\dfrac{n^3+1}{n^3-1}=\dfrac{\left(n+1\right)\left(n^2-n+1\right)}{\left(n-1\right)\left(n^2+n+1\right)}=\dfrac{\left(n+1\right)\left[\left(n-0,5\right)^2+0;75\right]}{\left(n-1\right)\left[\left(n+0,5\right)^2+0,75\right]}\)

Áp dụng công thức trên:

\(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}....\dfrac{9^3+1}{9^3-1}\)

\(=\dfrac{\left(2+1\right)\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right)\left[\left(2+0,5\right)^2+0,75\right]}.\dfrac{\left(3+1\right)\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right)\left[\left(3+0,5\right)^2+0,75\right]}...\dfrac{\left(9+1\right)\left[\left(9-0,5\right)^2+0,75\right]}{\left(9-1\right)\left[\left(9+0,5\right)^2+0,75\right]}\)

\(=\dfrac{3\left(1,5^2+0,75\right)}{\left(2,5^2+0,75\right)}.\dfrac{4\left(2,5^2+0,75\right)}{2\left(3,5^2+0,75\right)}...\dfrac{10\left(8,5^2+0,75\right)}{8\left(9,5^2+0,75\right)}\)

\(=\dfrac{3.4....10}{1.2.....8}.\dfrac{1,5^2+0,75}{9,5^2+0,75}\)

\(=\dfrac{9.10}{2}.\dfrac{3}{91}\)

\(=\dfrac{3}{2}.\dfrac{90}{91}< \dfrac{3}{2}\)

\(\Rightarrowđpcm\)

b) Làm tương tự