K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

\(\left(5x^3-7x^2+x\right):3x^n=\frac{5}{3}x^{3-n}-\frac{7}{3}x^{2-n}+\frac{1}{3}x^{1-n}\)

Để \(\left(5x^3-7x^2+x\right)⋮3x^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)

\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)

\(1-n\ge0\)\(\Leftrightarrow\)\(n\le1\)

Mà \(n\inℕ\) nên \(0\le n\le1\)\(\Rightarrow\)\(n\in\left\{0;1\right\}\)

\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n=\frac{13}{5}x^{4-n}y^{3-n}-x^{3-n}y^{3-n}+\frac{6}{5}x^{2-n}y^{2-n}\)

Để \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)⋮5x^ny^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)

\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)

Mà \(n\inℕ\) nên \(0\le n\le2\)\(\Rightarrow\)\(n\in\left\{0;1;2\right\}\)

Chúc bạn học tốt ~ 

20 tháng 10 2018

- \(A⋮B\Leftrightarrow\left[{}\begin{matrix}5x^3⋮3x^n\\-7x^2⋮3x^n\\x⋮3x^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le3\\n\le2\\n\le1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2\\n=0;1\end{matrix}\right.\Leftrightarrow n=0;1\)

-\(A⋮B\Leftrightarrow\left[{}\begin{matrix}13x^4y^3⋮5x^ny^n\\-5x^3y^3⋮5x^ny^n\\6x^2y^2⋮5x^ny^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le4;n\le3\\n\le3\\n\le2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2;3\\n=0;1;2\end{matrix}\right.\Leftrightarrow n=0;1;2\)

19 tháng 10 2018

t

21 tháng 10 2017

Cảm ơn bạn nhiều!

14 tháng 10 2019

Với mọi x, y

A chia hết cho B

<=> \(x^4y^3+3x^3y^3+x^2y^n⋮4x^ny^2\)

Khi đó: \(x^4;x^3;x^2⋮x^n\Rightarrow n\le2\)

\(y^3;y^n⋮y^2\Rightarrow n\ge2\)

Từ 2 điều trên => n = 2.

27 tháng 10 2019

nhanh

19 tháng 10 2018

Ta có : 

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

Vậy \(n=4\)

Chúc bạn học tốt ~ 

19 tháng 10 2018

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)

Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)

\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)

Chúc bạn học tốt ~ 

30 tháng 11 2018

cho mình hỏi tại sao có 2 lớn hơn hoặc bằng n

1 lớn hơn hoặc bằng n ? ko hiểu