K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2015

vào câu hỏi tươn gtuwj để tham khảo nhé !

28 tháng 10 2015

dùng phương pháp quy nạp nè
332+3-26n-27
=27^(n+1)-26n-27
Mệnh đề trên đúng vs n=1 vì 272-26-27=676
Giả sử mệnh đề đúng vs n=k
thì 27(k+10)-26k-27 chia hết cho 169
Bây giờ ta sẽ c/m mệnh đề đúng vs n=k+1
thì 27^(k+2)-26(k+1)-27
=27^(k+1).27-26k-53
=27(27^k+1-26k-27)+676k+676
chia hết cho 169 vì 27^(k+1)-26k-27 chia hết cho 169 do giả thiết quy nạp
Còn 676(k+1) luôn chia hết cho 169
Vậy mệnh đề trên đúng vs mọi số tự nhiên n và n> or= 1

9 tháng 7 2015

Đặt A (n) = 33n+3 - 26n  - 27

A(1) = 676 chia hết cho 169 

Giả sử A(n) chia hết cho 169 . ta cần chứng minh A (n +1) chia hết cho 169

Xét hiệu A(n +1) - A (n) = 33n+6 - 26(n +1) - 27 - 33n+3 + 26n + 27 = 33n+3. (33 - 1) - 26 = 26. (33n+3 - 1) 

Đặt B (n) = 33n+3 - 1. ta chứng minh B(n) chia hết cho 13

Có B(1) chia hết cho 13

Giả sử B(n) chia hết cho 13

Xét hiệu B(n+1) - B(n) = 33n+6 - 1 - 33n+3 + 1 = 33n+3. (33 - 1) = 26.33n+3 chia hết cho 13 (do 26 chia hết cho 13)

=> B (n + 1) chia hết 13

Vậy B(n) chia hết cho 13

=> A(n +1) - A (n) = 2.13.13. k = 169.k' => A(n +1) - A (n)  chia hết cho 169 mà  A (n)  chia hết cho 169

=> A (n+1) chia hết cho 169

=> ĐPCM

8 tháng 12 2016

Hay qua

10 tháng 10 2021

Tham khảo

Đặt A (n) = 33n+3 - 26n  - 27

A(1) = 676 chia hết cho 169 

Giả sử A(n) chia hết cho 169 . Ta cần chứng minh A (n +1) chia hết cho 169

Xét hiệu A(n +1) - A (n) = 33n+6 - 26(n +1) - 27 - 33n+3 + 26n + 27 = 33n+3. (33 - 1) - 26 = 26. (33n+3 - 1) 

Đặt B (n) = 33n+3 - 1. Ta chứng minh B(n) chia hết cho 13

Có B(1) chia hết cho 13

Giả sử B(n) chia hết cho 13

Xét hiệu B(n+1) - B(n) = 33n+6 - 1 - 33n+3 + 1 = 33n+3. (33 - 1) = 26.33n+3 chia hết cho 13 (do 26 chia hết cho 13)

⇒ B (n + 1) chia hết 13

Vậy B(n) chia hết cho 13

⇒ A(n +1) - A (n) = 2.13.13. k = 169.k 

⇒ A(n +1) - A (n)  chia hết cho 169 mà A (n)  chia hết cho 169

⇒ A (n+1) chia hết cho 169 (đpcm)

 

19 tháng 7 2015

Chứng minh bằng phương pháp quy nạp: Tức là :

- Điều cần chứng minh đúng với n = 1

- nếu điều cần chứng minh đúng với n = k thì cũng đúng với n = k + 1

=> Điều cần chứng minh là đúng

Giải bài:

- Với n = 1 : ta có 36 - 26 - 27 = 676 chia hết cho 169

- Giả sử : với n = k ta có: 33k+3 - 26k - 27 chia hết cho 169

Xét 33(k+1)+3 - 26.(k+1) - 27 = 27.33k+3 - 26k - 53 = 27.(33k+3 - 26k - 27) + 676k +676 chia hết cho 13 vì 33k+3 - 26k - 27 ; 676 đều chia hết cho 169

=> 33(k+1)+3 - 26.(k+1) - 27 chia hết cho 169

Vậy 33n+3 - 26n - 27 chia hết cho 169 với mọi n > =1

12 tháng 8 2016

Die Devil: kiểm tra kĩ đề bài trước khi phán xét vớ vẩn đi nhé

(*)Đề này hoàn toàn sai : Nếu lấy ngay n=0 hoặc n=1 thì hiệu trên không chia hết cho 59

P/s : đề này có thể dùng phương pháp quy nạp toán học để CM

12 tháng 8 2016

\(\text{Mik chẳng pít cm sao nhưng chắc chắn là chia hết☺}\)
 

6 tháng 8 2017

Toán lớp 6 gì mà khó thế bn

13 tháng 8 2019

Câu a sai đề. Mình cũng có câu đó nhưng ko ra