K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Tham khảo

Đặt A (n) = 33n+3 - 26n  - 27

A(1) = 676 chia hết cho 169 

Giả sử A(n) chia hết cho 169 . Ta cần chứng minh A (n +1) chia hết cho 169

Xét hiệu A(n +1) - A (n) = 33n+6 - 26(n +1) - 27 - 33n+3 + 26n + 27 = 33n+3. (33 - 1) - 26 = 26. (33n+3 - 1) 

Đặt B (n) = 33n+3 - 1. Ta chứng minh B(n) chia hết cho 13

Có B(1) chia hết cho 13

Giả sử B(n) chia hết cho 13

Xét hiệu B(n+1) - B(n) = 33n+6 - 1 - 33n+3 + 1 = 33n+3. (33 - 1) = 26.33n+3 chia hết cho 13 (do 26 chia hết cho 13)

⇒ B (n + 1) chia hết 13

Vậy B(n) chia hết cho 13

⇒ A(n +1) - A (n) = 2.13.13. k = 169.k 

⇒ A(n +1) - A (n)  chia hết cho 169 mà A (n)  chia hết cho 169

⇒ A (n+1) chia hết cho 169 (đpcm)

 

A=33n+3-26n-27

=33(n+1)-26n-27

=27n+1-1-26n-26

=(27-1)(27n+27n-1+...+1)-13(2n+2)

=>A/13=2(27n+27n-1+...+1)-2n-2

27 đồng dư với 1(mod 27)

=>2(27n+27n-1+...+1) đồng dư với 2n+2(mod 13)

=>A/13 đồng dư với 2n+2-2n-2=0(mod 13)

=>A/13 chia hết cho 13

=>A chia hết cho 169

=>đpcm

9 tháng 7 2016

ths ông, tui chưa hk đồng dư nha !!!@-@

17 tháng 2 2020

Ta có: n3−28n=n3−4n−24nn3−28n=n3−4n−24n

Ta xét n3−4n=n(n2−22)=n(n−2)(n+2)n3−4n=n(n2−22)=n(n−2)(n+2)

Nên tồn tại ít nhất 1 số chia hết cho 2, cho 4 và cho 6 nên biểu thức trên chia hết cho : 2 . 4 . 6 =48;

Do n là số chẵn nên n có dạng là 2k , xét 24n ta có:

24n=24.2k=48k⋮4824n=24.2k=48k⋮48

Hai số chia hết cho 48 nên hiệu của chúng chia hết cho 48;

VẬY...

CHÚC BẠN HỌC TỐT.....

17 tháng 2 2020

24nn3?

12 tháng 8 2016

Die Devil: kiểm tra kĩ đề bài trước khi phán xét vớ vẩn đi nhé

(*)Đề này hoàn toàn sai : Nếu lấy ngay n=0 hoặc n=1 thì hiệu trên không chia hết cho 59

P/s : đề này có thể dùng phương pháp quy nạp toán học để CM

12 tháng 8 2016

\(\text{Mik chẳng pít cm sao nhưng chắc chắn là chia hết☺}\)
 

13 tháng 11 2015

tick cho mình rồi mình làm cho

16 tháng 8 2016

a) = (a + 1/2)2 +3/4 không chia hết cho 25 với mọi a thuộc z

16 tháng 8 2016

bạn làm cụ thể hộ mình đc ko?