ai giúp mik với ạ, mik đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của bC
I là trung điểm của AC
Do đó: MI là đường trung bình của ΔABC
Suy ra: MI=AB/2=3(cm)
\(\dfrac{1}{5}:x=\dfrac{7}{35}+\dfrac{5}{35}\)
\(\dfrac{1}{5}:x=\dfrac{12}{35}\)
\(x=\dfrac{1}{5}:\dfrac{12}{35}\)
\(x=\dfrac{1}{5}\times\dfrac{35}{12}\)
\(x=\dfrac{7}{12}\)
\(\dfrac{-1}{9}.\dfrac{-3}{5}+\dfrac{5}{-6}.\dfrac{-3}{5}-\dfrac{7}{2}.\dfrac{3}{5}\\=\dfrac{1}{9}.\dfrac{3}{5}+\dfrac{5}{6}.\dfrac{3}{5}-\dfrac{7}{2}.\dfrac{3}{5}\\ =\dfrac{3}{5}\left(\dfrac{1}{9}+\dfrac{5}{6}-\dfrac{7}{2}\right)\\ =\dfrac{3}{5}.\dfrac{-23}{9}\\ =-\dfrac{23}{15}\)
A = 32010 + 52010 cmr A ⋮ 13
A = 32010 + 52010 = (33)670 + (54)502.52 = 27670 + 625502.25
27 \(\equiv\) 1 (mod 13) ⇒ 27670 \(\equiv\) 1670 (mod 13) ⇒ 27670 \(\equiv\)1 (mod 13)
625 \(\equiv\) 1(mod 13) ⇒625502 \(\equiv\) 1502(mod 13) ⇒ 625502\(\equiv\) 1(mod 13)
25 \(\equiv\) -1 (mod 13)
625502 \(\equiv\) 1 (mod 13)
Nhân vế với vế ta được: 625502.25 \(\equiv\) -1 (mod 13)
Mặt khác ta có: 27670 \(\equiv\) 1 (mod 13)
Cộng vế với vế ta được:27670 + 625502.25 \(\equiv\) 1 -1 (mod 13 )
27670 + 625502.25 \(\equiv\) 0 (mod 13)
⇒ 27670 + 625502.25 ⋮ 13
⇒ A = 32010 + 52010 = 27670 + 625502.25 ⋮ 13 (đpcm)