K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

\(S_{BDC}=\dfrac{8\times6}{2}=24\left(cm^2\right)\).

-Hạ BE vuông góc với DC tại E.

\(S_{BDC}=\dfrac{1}{2}\times BE\times DC\).

\(\Rightarrow\dfrac{1}{2}\times BE\times10=24\)

\(\Rightarrow BE\times5=24\)

\(\Rightarrow BE=24:5=4,8\left(cm\right)\).

\(S_{ABCD}=\dfrac{\left(AB+DC\right)\times BE}{2}=\dfrac{\left(5+10\right)\times4,8}{2}=36\left(cm^2\right)\)

30 tháng 6 2015

BH = 4 ( học tam giác đồng dạng chưa)

30 tháng 6 2015

A B C D 6 8 H O K

Gọi O là giao điểm của AC và BD 
Do ABCD là hình thang cân và AC vuông BD nên ta có OCD là tam giác vuông cân tại O 
=> Góc ODC = 450 => HDB vuông cân tại H 
=> BH = DH 

Dựng thêm đường cao AK.

Ta có ABHK là hình chữ nhật => HK = AB = 6
DK + HC = 2DK = DC - HK = 8 - 6 = 2 => 2DK = 2 => DK = 1 
=> DH = DK + HK = 1 + 6 = 7 cm

Vậy BH = DH = 7cm.

31 tháng 7 2018

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

1 tháng 5 2020

thang cho dung hoi nua

3 tháng 9 2016

Từ B kẻ đường cao BH vuông góc với CD tại H. Đặt HC = x cm (x>0)

Ta có AB = DH = \(2\sqrt{3}\)

Áp dụng định lí Pytago : \(BH=\sqrt{BC^2-HC^2}=\sqrt{6^2-x^2}\) (cm)

=> \(AD=BH=\sqrt{6^2-x^2}\) (cm)

Lại có \(AD=tan30^o\times CD\) hay \(\sqrt{36-x^2}=\frac{\sqrt{3}}{3}.\left(2\sqrt{3}+x\right)\Leftrightarrow36-x^2=\frac{12+x^2+4\sqrt{3}}{3}\)

\(\Leftrightarrow\frac{4x^2}{3}=\frac{96-4\sqrt{3}}{3}\Rightarrow x=24-\sqrt{3}\) 

Vậy \(CD=2\sqrt{3}+x=2\sqrt{3}+24-\sqrt{3}=24+\sqrt{3}\) (cm)

8 tháng 1 2017

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình thang cân ABCD ( AB//CD ) có Dˆ = 600

Theo định nghĩa và giả thiết về hình thang cân ta có: Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Do góc A và góc D là hai góc cùng nằm một phía của