cho hình thang vuông ABCD (AB//CD) Có AB=6cm CD=8cm. góc C= 60 độ. Tính BC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{BDC}=\dfrac{8\times6}{2}=24\left(cm^2\right)\).
-Hạ BE vuông góc với DC tại E.
\(S_{BDC}=\dfrac{1}{2}\times BE\times DC\).
\(\Rightarrow\dfrac{1}{2}\times BE\times10=24\)
\(\Rightarrow BE\times5=24\)
\(\Rightarrow BE=24:5=4,8\left(cm\right)\).
\(S_{ABCD}=\dfrac{\left(AB+DC\right)\times BE}{2}=\dfrac{\left(5+10\right)\times4,8}{2}=36\left(cm^2\right)\)
Gọi O là giao điểm của AC và BD
Do ABCD là hình thang cân và AC vuông BD nên ta có OCD là tam giác vuông cân tại O
=> Góc ODC = 450 => HDB vuông cân tại H
=> BH = DH
Dựng thêm đường cao AK.
Ta có ABHK là hình chữ nhật => HK = AB = 6
DK + HC = 2DK = DC - HK = 8 - 6 = 2 => 2DK = 2 => DK = 1
=> DH = DK + HK = 1 + 6 = 7 cm
Vậy BH = DH = 7cm.
a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)
Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)
Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)
ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)
\(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)
\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)
\(\Rightarrow\widehat{ABC}=150^0\)
b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)
Diện tích hình thang ABCD là:
\(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\)
Chúc bạn học tốt.
Từ B kẻ đường cao BH vuông góc với CD tại H. Đặt HC = x cm (x>0)
Ta có AB = DH = \(2\sqrt{3}\)
Áp dụng định lí Pytago : \(BH=\sqrt{BC^2-HC^2}=\sqrt{6^2-x^2}\) (cm)
=> \(AD=BH=\sqrt{6^2-x^2}\) (cm)
Lại có \(AD=tan30^o\times CD\) hay \(\sqrt{36-x^2}=\frac{\sqrt{3}}{3}.\left(2\sqrt{3}+x\right)\Leftrightarrow36-x^2=\frac{12+x^2+4\sqrt{3}}{3}\)
\(\Leftrightarrow\frac{4x^2}{3}=\frac{96-4\sqrt{3}}{3}\Rightarrow x=24-\sqrt{3}\)
Vậy \(CD=2\sqrt{3}+x=2\sqrt{3}+24-\sqrt{3}=24+\sqrt{3}\) (cm)
Xét hình thang cân ABCD ( AB//CD ) có Dˆ = 600
Theo định nghĩa và giả thiết về hình thang cân ta có:
Do góc A và góc D là hai góc cùng nằm một phía của