K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2015

BH = 4 ( học tam giác đồng dạng chưa)

30 tháng 6 2015

A B C D 6 8 H O K

Gọi O là giao điểm của AC và BD 
Do ABCD là hình thang cân và AC vuông BD nên ta có OCD là tam giác vuông cân tại O 
=> Góc ODC = 450 => HDB vuông cân tại H 
=> BH = DH 

Dựng thêm đường cao AK.

Ta có ABHK là hình chữ nhật => HK = AB = 6
DK + HC = 2DK = DC - HK = 8 - 6 = 2 => 2DK = 2 => DK = 1 
=> DH = DK + HK = 1 + 6 = 7 cm

Vậy BH = DH = 7cm.

31 tháng 7 2018

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

1 tháng 5 2020

thang cho dung hoi nua

8 tháng 1 2017

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình thang cân ABCD ( AB//CD ) có Dˆ = 600

Theo định nghĩa và giả thiết về hình thang cân ta có: Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Do góc A và góc D là hai góc cùng nằm một phía của

29 tháng 3 2022

a, Xét ΔABD và ΔBDC có :

\(\widehat{A}=\widehat{DBC}\left(gt\right)\)

\(\widehat{ABD}=\widehat{BDC}\) (AB//CD, slt)

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\)

b, Ta có : \(\Delta ABD\sim\Delta BDC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AD}{DC}\)

hay \(\dfrac{6}{12}=\dfrac{8}{BC}\)

\(\Rightarrow BC=\dfrac{12.8}{6}=16\left(cm\right)\)