K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Ta có:

\(\left(a^{2014}+b^{2015}+c^{2016}\right)-\left(a^{2012}+b^{2013}+c^{2014}\right)\)

\(=a^{2012}\left(a+1\right)\left(a-1\right)+b^{2013}\left(b+1\right)\left(b-1\right)+c^{2014}\left(c+1\right)\left(c-1\right)⋮6\)

\(\left(a^{2014}+b^{2015}+c^{2016}\right)⋮6\)

\(\Rightarrow\left(a^{2012}+b^{2013}+c^{2014}\right)⋮6\)

27 tháng 12 2017

Sao ko thấy đề nhỉ ?

14 tháng 2 2020

\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)

\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)

14 tháng 2 2020

\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)

\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)

17 tháng 2 2020

a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015

S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015

S1 = (-1) + (-1) + ... + (-1) + 2015

2014 : 2 = 1007

S1 = (-1) . 1007 + 2015

S1 = (-1007) + 2015

S1 = 1008

b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016

S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]

S2 = 2 + 2 + ... 2

2016 : 2 = 1008

S2 = 2 . 1008

S2 = 2016

c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)

S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]

S3 = (-2) + (-2) + ... + (-2)

(2015 - 1) : 2 + 1 = 1008 : 2 = 504

S3 = (-2) . 504

S3 = -1008

d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016

S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0

S4 = 2016 + 0

S4 = 2016

17 tháng 2 2020

a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)

b, làm tương tự phần a

c, cũng làm tương tự

d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)