Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)
Tương tự cộng theo vế suy ra đpcm
đây nhé!!
1+2-3-4+5+6-7-8+9+10-........+2010-2011-2012+2013+2014-2015-2016+2017
=1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+....+(2010-2011-2012+2013)+(2014-2015-2016+2017)
=1+0+0+0+.....+0+0
=1.
ĐÚNG THÌ CHO MINK NHA!!^_^
2014^2015=2014^(2012+3)=(2014^2012)*(2014^3)=(...6)*(...4)=(...4) (1)
2013^2015=2013^(2012+3)=(2013^2012)*(2013^3)=(...1)*(...7)=(...7) (2)
2012^2015=2012^(2012+3)=(2012^2012)*(2012^3)=(...6)*(...8)=(...8) (3)
2017^2016=(...1) (4)
Từ(1) (2) (3) (4) ta có:(...4)+(...7)+(...8)-(...1)=(...8)