Có x, y, z thuộc Z đồng thời thoả mãn các điều kiện sau đây không
x^3 + x*y*z = 957
y^3 + x*y*z = 759
z^3 + x*y*z = 579
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho
xét x^3 + xyz= 975 ta có
x^3 + xyz= x(x^2+yz)=975 => x là số lẻ
tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ
x là số lẻ => x^3 là số lẻ
=> x^3+xyz là số chẵn
trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho
Lời giải:
$x^3+y^3+z^3=x+y+z+2020$
$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$
$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$
Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$
$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$
Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.
ta có: xy+x+y = 3
=> xy +x +y +1 =4
=> (x+1).(y+1) = 4 (1)
tương tự, ta có: (y+1).(z+1)= 9 (2)
(x+1).(z+1) = 16 (3)
Nhân (1);(2);(3) lại vs nhau
được: \([\left(x+1\right).\left(y+1\right).\left(z+1\right)]^2=576=24^2=\left(-24\right)^2.\)
TH1: (x+1).(y+1).(z+1) = 24
=> 4.(z+1)=24
=> z+1 = 6 => z = 5
mà yz +y +z = 8
=> 6y + 5 = 8 => y = 1/2
mà xz+z+x = 15
=> 6x + 5 = 15 => x = 5/3
=> P = 5/3 +1/2 + 5 = 43/6
TH2: (x+1).(y+1).(z+1) = -24
...
bn cũng lm tương tự như TH1 nha!
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)
\(=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)