Ta ko có \(2^m+2^n=2^{m+n}\)
với mọi số nguyên dương n, m.Nhưng có những số nguyên dương m,n có tính chất trên. Tìm các số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{(m,n) = }\left\{\left(0;0\right);\left(1;1\right)\right\}\)
Ta có :
\(2^m+2^n=2^{m+n}\Leftrightarrow2^{m+n}-2^m-2^n=0\)
\(\Leftrightarrow2^m.\left(2^n-1\right)-\left(2^n-1\right)=1\Leftrightarrow\left(2^n-1\right).\left(2^m-1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}2^n-1=1\\2^m-1=1\end{cases}}\Leftrightarrow m=n=1\)
Vậy m = 1 ; n = 1
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2m+2n=2m+n⇔2m+n−2m−2n=0
⇔2m.(2n−1)−(2n−1)=1⇔(2n−1).(2m−1)=1
⇔{
2n−1=1 |
2m−1=1 |
Vậy m = 1 ; n = 1
Đúng 4 Sai 0 Shit đã chọn câu trả lời này.\(2^m+2^n=2^{m+n}\)--->Chia 2 vế cho 2n
\(\Rightarrow2^{m-n}+1=2^m\Leftrightarrow2^m-2^{m-n}=1\)
\(\Leftrightarrow2^{m-n}\left(2^n-1\right)=1\)---> Các lũy thừa số mũ tự nhiên của 2 không thể bé hơn 1 nên pt chỉ có nghiệm khi:
\(\hept{\begin{cases}2^{m-n}=1\\2^n-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2^{m-n}=2^0\\2^n=2^1\end{cases}\Leftrightarrow}\hept{\begin{cases}m-n=0\\n=1\end{cases}\Rightarrow}m=n=1}\)
\(2^m+2^n=2^{m+n}\Leftrightarrow2^m.2^n-2^m-2^n+1=1\)
\(2^m\left(2^n-1\right)-\left(2^n-1\right)=1\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1\)
Vì \(2^m-1\)và \(2^n-1\)đều lớn hơn 0 nên ta chỉ có một trường hợp \(\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\n=1\end{cases}}}\)
Nếu 2m + 2n = 2m+n
thì: 2m + 2n = 2m.2n
=> 2m = 2m.2n - 2n
=> 2m = 2n.(2m-1)
=> 1 = (2n - 1).(2m-1)
còn lại bạn lập bảng tự làm nhé
1) cô hướng dẫn rồi
2)ta có 1/4 =3/12=1/12+1/6
3)ta có 1/6=3/18=1/9+1/18
4) giống câu 1)
program tim_nguon_nho_nhat;
const
MAX_NUMBER = 10000;
var
M, nguon_nho_nhat: Integer;
function TinhTongChuSo(num: Integer): Integer;
var
sumOfDigits: Integer;
begin
sumOfDigits := 0;
while num > 0 do
begin
sumOfDigits := sumOfDigits + (num mod 10);
num := num div 10;
end;
TinhTongChuSo := sumOfDigits;
end;
function TimNguonNhoNhat(M: Integer): Integer;
var
N, M_temp, M_digits, nguon_nho_nhat: Integer;
begin
M_temp := M;
nguon_nho_nhat := MAX_NUMBER;
for N := 1 to M_temp do
begin
M_digits := TinhTongChuSo(N) + N;
if M_digits = M_temp then
begin
if N < nguon_nho_nhat then
nguon_nho_nhat := N;
end;
end;
if nguon_nho_nhat = MAX_NUMBER then
TimNguonNhoNhat := 0
else
TimNguonNhoNhat := nguon_nho_nhat;
end;
begin
Readln(M);
nguon_nho_nhat := TimNguonNhoNhat(M);
if nguon_nho_nhat = 0 then
Writeln('0')
else
Writeln('Nguon nho nhat cua ', M, ' la ', nguon_nho_nhat);
end.
Lời giải:
Từ \(2^m+2^n=2^{m+n}=2^m.2^n\Rightarrow 2^m+2^n\vdots 2^n\)
\(\Leftrightarrow 2^m\vdots 2^n\Leftrightarrow m\geq n(1)\)
Tương tự, \(2^m+2^n=2^m.2^n\vdots 2^m\Rightarrow 2^n\vdots 2^m\Leftrightarrow n\geq m(2)\)
Từ \((1),(2)\Rightarrow m=n\). Thay vào PT ban đầu:
\(2^n+2^n=2^{2n}\Leftrightarrow 2^{n+1}=2^{2n}\Rightarrow n=1\)
Vậy PT có nghiệm \(m=n=1\)