K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

\(2^m+2^n=2^{m+n}\)--->Chia 2 vế cho 2n

\(\Rightarrow2^{m-n}+1=2^m\Leftrightarrow2^m-2^{m-n}=1\)

\(\Leftrightarrow2^{m-n}\left(2^n-1\right)=1\)---> Các lũy thừa số mũ tự nhiên của 2 không thể bé hơn 1 nên pt chỉ có nghiệm khi:

\(\hept{\begin{cases}2^{m-n}=1\\2^n-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2^{m-n}=2^0\\2^n=2^1\end{cases}\Leftrightarrow}\hept{\begin{cases}m-n=0\\n=1\end{cases}\Rightarrow}m=n=1}\)

10 tháng 9 2020

\(2^m+2^n=2^{m+n}\Leftrightarrow2^m.2^n-2^m-2^n+1=1\)

\(2^m\left(2^n-1\right)-\left(2^n-1\right)=1\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1\)

Vì \(2^m-1\)và \(2^n-1\)đều lớn hơn 0 nên ta chỉ có một trường hợp \(\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\n=1\end{cases}}}\)

31 tháng 7 2021

\(\text{(m,n) = }\left\{\left(0;0\right);\left(1;1\right)\right\}\)

31 tháng 7 2021

(m,n) = {(1,1)} (vi m, n la so nguyen duong)

 

 

22 tháng 8 2017

a)
x2 - 4x + 3 = x2 - x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b)
x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)

8 tháng 10 2016

Nếu 2+ 2n = 2m+n 

thì:  2+ 2 = 2m.2n

=>  2m = 2m.2n - 2n

=>  2= 2n.(2m-1)

=>  1   = (2n - 1).(2m-1)

 còn lại bạn lập bảng tự làm nhé

4 tháng 12 2021

Tham khảo:D

 

 Cách 1: 
2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

Cách 2: 
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2. 
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b. 
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2. 

Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.

17 tháng 8 2015

Em Xét 2 trường hợp: n = 2k và n = 2k + 1