Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB
Bài 1:
Giải:
Gọi H là giao của AG và BC
Ta có: CN là đường trung tuyến ứng với AB
BM là đường trung tuyến ứng với AC
Mà BM = CN
\(\Rightarrow\Delta ABC\) cân tại A
Lại có 2 đường trung tuyến BM, CN cắt nhau tại G mà AH cũng cắt tại G nên từ đó AH là đường trung tuyến còn lại.
\(\Rightarrow AH\) cũng là đường cao ứng với cạnh BC
\(\Rightarrow AH\perp BC\)
hay \(AG\perp BC\)
hình bạn tự vẽ nha
trên tia đối của tia AD lấy H sao cho AD=DH
tg ADB=tg HCD(c.g.c)
Xét \(\Delta ACH\)có AH<AC+CH (bất đẳng thức tam giác)
do AH=2AD nên 2AD<AC+CH
mà CH=AB nên 2AD<AB+AC (đpcm)
b)xét tg BGC có BG+GC>BC(bất đẳng thức tg)
mà BG\(=\dfrac{2}{3}BE\),\(GC=\dfrac{2}{3}CF\) nên \(\dfrac{2}{3}BE+\dfrac{2}{3}CF>BC\Rightarrow BE+CF>\dfrac{3}{2}BC\)(đpcm)
c)tương tự câu a ta có
2BE<AB+AC
2CF<BC+AC
suy ra 2(AD+BE+CF)<2(AB+AC+BC)
hay AD+BE+CF<AB+AC+BC (1)
tương tự câu b ta có CF+AD>\(\dfrac{3}{2}AC;BE+AD>\dfrac{3}{2}AD\)
cộng các vế với vế trong các bất đẳng thức trên ta có
2(AD+BE+CF)>3/2(AB+AC+BC)
\(\Leftrightarrow AD+BE+CF>\dfrac{3}{4}\left(AB+AC+BC\right)\left(2\right)\)
từ (1) và (2) ta có \(\dfrac{3}{4}\left(AB+AC+BC\right)< AD+BE+CF< AB+BC+AC\left(đpcm\right)\)