K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Theo quy luật thì mình nghĩ đáng lẽ \(\dfrac{4}{5.9}\)phải là\(\dfrac{4}{7.9}\)Bạn có chép sai đề ko?

27 tháng 3 2017

A=1-\(\dfrac{4}{5.7}-\dfrac{4}{7.9}-\dfrac{4}{9.11}...-\dfrac{4}{59.61}\)

A=\(1-\left(\dfrac{4}{5.7}+\dfrac{4}{7.9}+\dfrac{4}{9.11}+...+\dfrac{4}{59.61}\right)\)

Đặt B=\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+\dfrac{4}{9.11}+...+\dfrac{4}{59.61}\)

B=\(2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\right)\) B=\(2\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\) B=\(2\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=2.\dfrac{56}{305}\) B=\(\dfrac{112}{305}\) \(\Rightarrow A=1-\dfrac{112}{305}=\dfrac{193}{305}\)

14 tháng 11 2017

\(\frac{112}{305}\)nha 

14 tháng 11 2017

Đặt A=\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{59.61}\)

      A=2( \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{59.61}\))

       A=2( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\)\(\frac{1}{59}-\frac{1}{61}\))

         =2( \(\frac{1}{5}-\frac{1}{61}\))=2.\(\frac{56}{305}\)=\(\frac{112}{305}\)

11 tháng 3 2017

Ta có :

\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+............+\dfrac{4}{59.61}\)

\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+..............+\dfrac{2}{59.61}\)

\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.......+\dfrac{1}{59}-\dfrac{1}{61}\)

\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{61}\)

\(\dfrac{A}{2}=\dfrac{56}{305}\)

\(\Rightarrow A=\dfrac{112}{305}\)

Chúc bn học tốt!!

11 tháng 3 2017

\(A=\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)

\(A=2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)

\(A=2\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(A=2\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

\(A=2.\dfrac{56}{305}\)

\(A=\dfrac{112}{305}\)

14 tháng 3 2017

\(T=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+\dfrac{3}{9\cdot11}+...+\dfrac{3}{59\cdot61}\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{59\cdot61}\right)\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}\cdot\dfrac{56}{305}=\dfrac{84}{305}\)

14 tháng 3 2017

\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{59.61}\)

\(=3.\left(\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+...+\dfrac{1}{59.61}\right)\)

\(=3.\dfrac{1}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}.\dfrac{56}{305}\)

\(=\dfrac{84}{305}\)

14 tháng 11 2017

Ta có:

\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)

\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)

\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(\dfrac{A}{2}=\dfrac{1}{6}-\dfrac{1}{61}\)

\(\dfrac{A}{2}=\dfrac{56}{305}\)

\(\Rightarrow A=\dfrac{112}{305}\)