Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{59.61}\)
A=2( \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{59.61}\))
A=2( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\)\(\frac{1}{59}-\frac{1}{61}\))
=2( \(\frac{1}{5}-\frac{1}{61}\))=2.\(\frac{56}{305}\)=\(\frac{112}{305}\)
\(\dfrac{4}{3.5}+\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{97.95}\)
\(=2\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{95.97}\right)\)
\(=2\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=2\left(\dfrac{1}{3}-\dfrac{1}{97}\right)\)
\(=2.\dfrac{94}{291}=\dfrac{188}{291}\)
\(=2\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{95\cdot97}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{97}\right)=2\cdot\dfrac{94}{291}=\dfrac{188}{291}\)
\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{2a-5b}{-14}=\dfrac{a-3b}{-9}=\dfrac{4a+b}{16}=\dfrac{8a-2b}{16}\\ \Leftrightarrow A=\dfrac{-14}{-9}-\dfrac{16}{16}=\dfrac{14}{9}-1=\dfrac{5}{9}\)
\(a,\left(7+3\dfrac{1}{4}-\dfrac{3}{5}\right)+\left(0,4-5\right)-\left(4\dfrac{1}{4}-1\right)\)
\(=\left(7+\dfrac{13}{4}-\dfrac{3}{5}\right)-\dfrac{23}{5}-\left(\dfrac{17}{4}-1\right)\)
\(=7+\dfrac{13}{4}-\dfrac{3}{5}-\dfrac{23}{5}-\dfrac{17}{4}+1\)
\(=\left(7+1\right)+\left(\dfrac{13}{4}-\dfrac{17}{4}\right)-\left(\dfrac{3}{5}+\dfrac{23}{5}\right)\)
\(=8-\dfrac{4}{4}-\dfrac{26}{5}\)
\(=7-\dfrac{26}{5}\)
\(=\dfrac{9}{5}\)
\(b,\dfrac{2}{3}-\left[\left(-\dfrac{7}{4}\right)-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(=\dfrac{2}{3}-\left(-\dfrac{7}{4}-\dfrac{1}{2}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{14}{8}-\dfrac{4}{8}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{21}{8}\right)\)
\(=\dfrac{2}{3}+\dfrac{21}{8}\)
\(=\dfrac{79}{24}\)
\(c,\left(9-\dfrac{1}{2}-\dfrac{3}{4}\right):\left(7-\dfrac{1}{4}-\dfrac{5}{8}\right)\)
\(=\left(\dfrac{36}{4}-\dfrac{2}{4}-\dfrac{3}{4}\right):\left(\dfrac{56}{8}-\dfrac{2}{8}-\dfrac{5}{8}\right)\)
\(=\dfrac{31}{4}:\dfrac{49}{8}\)
\(=\dfrac{62}{49}\)
\(d,3-\dfrac{1-\dfrac{1}{7}}{1+\dfrac{1}{7}}=3-\dfrac{\dfrac{7}{7}-\dfrac{1}{7}}{\dfrac{7}{7}+\dfrac{1}{7}}=3-\left(\dfrac{6}{7}:\dfrac{8}{7}\right)=3-\dfrac{3}{4}=\dfrac{9}{4}\)
\(A=\dfrac{2}{3}+\dfrac{-1}{3}=\dfrac{1}{3}\\ B=\dfrac{25}{11}\times\dfrac{13}{12}\times\dfrac{-11}{5}=\dfrac{5\times13\times\left(-1\right)}{1\times12\times1}=\dfrac{-65}{12}\\ C=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\times\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\times\dfrac{-2}{5}=\dfrac{-11}{50}\)
\(B< -1< C< 0< A\\ \Leftrightarrow B< C< A\)
a,
\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\\ =1\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\cdot\dfrac{1}{2^2}+\left(2-1\right)\cdot\dfrac{1}{2^3}+...+\left(2-1\right)\cdot\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}-\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}}{2^{2006}}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}-1}{2^{2006}}\)
b,
\(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{59\cdot61}\\ =\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\\ =\dfrac{1}{5}-\dfrac{1}{61}\\ =\dfrac{56}{305}\)
c,
\(\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\dfrac{100}{101}\\ =\dfrac{350}{101}\)
Đặt:
\(X=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)
\(2X=2\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)
\(2X=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2X-X=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)\(X=\dfrac{1}{2}-\dfrac{1}{2^{2016}}\)
\(Y=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\)
\(Y=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(Y=\dfrac{1}{5}-\dfrac{1}{61}=\dfrac{56}{305}\)
\(Z=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)
\(Z=\dfrac{7}{1.3}+\dfrac{7}{3.5}+\dfrac{7}{5.7}+...+\dfrac{7}{99.101}\)
\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{101}\right)\)
\(Z=\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{700}{202}\)
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{17}+\dfrac{1}{11}\right)}=\dfrac{3}{13}\)
\(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{11}}{\dfrac{13}{4}-\dfrac{13}{5}+\dfrac{13}{7}+\dfrac{13}{11}}\)
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}\)
\(=\dfrac{3}{13}\)
Ta có:
\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{1}{6}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{56}{305}\)
\(\Rightarrow A=\dfrac{112}{305}\)