Chứng minh:
(x3+x2y+xy2+y3)(x-y)=x3-y3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x ≥ 0; y ≥ 0 thì x + y ≥ 0
Ta có: x3 + y3 ≥ x2y + xy2
⇔ (x3 + y3) – (x2y + xy2) ≥ 0
⇔ (x + y)(x2 – xy + y2) – xy(x + y) ≥ 0
⇔ (x + y)(x2 – xy + y2 – xy) ≥ 0
⇔ (x + y)(x2 – 2xy + y2) ≥ 0
⇔ (x + y)(x – y)2 ≥ 0 (Luôn đúng vì x + y ≥ 0 ; (x – y)2 ≥ 0)
Dấu « = » xảy ra khi (x – y)2 = 0 ⇔ x = y.
`a)(x-1)(x^2+x+1)`
`=x^3+x^2+x-x^2-x-1`
`=x^3-1`
`b)(x^3+x^2y+xy^2+y^3)(x-y)`
`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`
`=x^4-y^4`
a) VT`=(x-1)(x^2+x+1)`
`=x^3 +x^2 +x -x^2-x-1 `
`=x^3-1=` VP.
b) VT `=(x^3+x^2y+xy^2+y^3)(x-y)`
`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`
`=x^4-y^4=` VP.
Ta có: \(\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=\left[x^2\left(x-y\right)+y^2\left(x-y\right)\right]\left(x+y\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=x^4-y^4=2^4-\left(\dfrac{1}{2}\right)^4=16-\dfrac{1}{16}=\dfrac{255}{16}\)
D = ( x 3 + y 3 ) – x y ( x + y ) = ( x + y ) ( x 2 – x y + y 2 ) – x y ( x + y ) = ( x + y ) ( x 2 – x y + y 2 – x y ) = ( x + y ) [ x ( x – y ) – y ( x – y ) ] = ( x + y ) ( x – y ) 2
Vì x = y ó x – y = 0 nên D = ( x + y ) ( x – y ) 2 = 0
Đáp án cần chọn là: D
Ta có
B = x 3 + x 2 y – x y 2 – y 3 = x 2 ( x + y ) – y 2 ( x + y ) = ( x 2 – y 2 ) ( x + y ) = ( x – y ) ( x + y ) ( x + y ) = ( x – y ) ( x + y ) 2
Thay x = 3,25 ; y = 6,57 ta được
B = ( 3 , 25 – 6 , 75 ) ( 3 , 25 + 6 , 75 ) 2 = - 3 , 5 . 10 2 = - 350
Đáp án cần chọn là: B
(x3+x2y+xy2+y3)(x-y)
=x(x3+x2y+xy2+y3)-y(x3+x2y+xy2+y3)
=x4+x3y+x2y2+xy3-x3y-x2y2+xy3+y4
= x4+y4
đề sai bạn xem lại đề
(x3+x2y+xy2+y3)(x-y)
=x(x3+x2y+xy2+y3)-y(x3+x2y+xy2+y3)
=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4
= x4-y4