Cho tam giác ABC vuông tại B có góc ACB = 30o .Tia phân giác của A cắt cạnh BC tại D . Lấy điểm E trên AC sao cho AB = AE .
a. Tính ADB = ?
b. Chứng minh : tam giác BDA = tam giác EDA
c. Chứng minh : DA = DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB và ΔEMB có
BA=BE(gt)
\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))
BM chung
Do đó: ΔAMB=ΔEMB(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MEB}=90^0\)
hay ME\(\perp\)BC(đpcm)
b) Ta có: ΔABC vuông tại A(gt)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)
\(\Leftrightarrow\widehat{ABC}=60^0\)
hay \(\widehat{ABE}=60^0\)
Xét ΔABE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)
nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
a) Tam giác ABC có góc B = 900, góc ACB = 300.
Suy ra góc A = 1800 - góc B - góc ACB = 180 - 90 - 30 = 600.
Mà AD là tia phân giác của góc A -> góc DAB=góc DAE = góc A / 2 = \(\frac{60^0}{2}=30^0\)
mà góc ABD bằng 900 -> góc ADB = 1800-900-300=600.
Vậy góc ADB bằng 600.
b) Xét hai tam giác BDA và tam giác EDA có :
AB = AE (GT)
góc BAD = góc EAD (cmt)
AD chung
Từ ba điều trên suy ra : tam giác BDA = tam giác EDA.
c) Ta có : góc DAE bằng = 300 (cmt)
mà góc ACB bằng 300 (GT)
Từ hai điều trên suy ra tam giác DAC cân tại D.
-> DA = DC (đpcm).
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx