Tam giác ABC có đường trung tuyến BE, CF cắt nhau tại G, với BF + FG = CE + EG. Chứng minh tam giác ABC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
a: Xét ΔABC có
AI,BE,CF vừa là trung tuyến vừa đồng quy tại G
=>G là trọng tâm của ΔABC
=>BG=2GE; CG=2GFl AG=2GI
=>BG=GN; CG=GP; AG=GM
Gọi O là giao của PM và BG
Xét tứ giác ABMN có
G là trung điểm chung của AM và BN
=>ABMN là hình bình hành
=>AN=BM
Xét tứ giác APMC có
G là trung điểm của AM và PC
=>APMC là hình bình hành
=>AP=MC
Xét tứ giác BPNC có
G là trung điểm chung của BN và PC
=>BPNC là hình bình hành
=>BP=NC và NP=BC
Xet ΔMNP và ΔABC có
MN=AB
NP=BC
MP=AC
=>ΔMNP=ΔABC
b: Xét tứ giác BPGM có
GP//BM
GP=BM
=>BPGM là hình bình hành
=>O là trung điểm của BG và PM
=>BO=OG=GE=EN
=>NG=2/3NO
Xét ΔMNP có
NO là trung tuyến
NG=2/3NO
=>G là trọng tâm của ΔMNP