Tìm số tự nhiên nhỏ nhất chia cho 8, cho 10, cho 15, cho 20 có số dư theo thứ tự là 5,12,17 và chia hết cho 41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên nhỏ nhất chia cho 8, 10, 15, 20 được số dư theo thứ tự 5, 7,12,17 và chia hết cho 41
Vì a:8;10;15;20 dư 5;7;12;17
suy ra a+2 chia hết ch 8;10;15;20 suy ra a+2 thuoocjBCNN(8;10;15;20)
8=23 ; 10=2.5 ; 12=22 ; 17=1.17
suy ra BCNN(8;10;15;20)=23.6.17=680
suy ra a+2=680
a=680-2
suy ra a=678
tìm số tự nhiên nhỏ nhất chia cho 8 ; 10 ; 15 ; 20 theo thứ tự dư 5 ; 7 ; 12 ; 17 và chia hết cho 41
Gọi số cần tìm là a (a thuôc N)
a:8 dư 5 ⇒a+3 ⋮ 8
a:10 dư 7⇒a+3 ⋮ 10
a:15 dư 12⇒a+3 ⋮ 15
a:20 dư 17⇒a+3 ⋮ 20
Do đó a+3 thuộc Ư 8 10 15 20
a+3 =tự tìm nha mik ko ranh
a=
đó a chia hết cho 11 suy ra tìm số chia hết 11 nhỏ nhất trong tập hợp a
chcú bn hok tốt @_@
lãi suất tiết kiệm là 0,5% một tháng. Một người gửi tiết kiệm 6000000 đồng. hỏi sau một năm cả tiền gửi và tiền lãi là bao nhiêu
Gọi số cần tìm là a (a thuôc N)
a:8 dư 5 \(\Rightarrow\)a+3\(⋮\)8
a:10 dư 7\(\Rightarrow\)a+3\(⋮\)10
a:15 dư 12\(\Rightarrow\)a+3\(⋮\)15
a:20 dư 17\(\Rightarrow\)a+3\(⋮\)20
Do đó a+3 thuộc Ư 8 10 15 20
a+3 =tự tìm nha mik ko ranh
a=
do a chia hết cho 11 suy ra tim so chia het 11 nho nhat trong tap hop a
oke baybe
Câu c , đ đợi mình suy nghĩ nhé
a ) Gọi x là STN cần tìm
a chia 8 dư 6
a chia 12 dư 10
a chia 15 dư 13
=> ( a + 2 ) chia hết cho 8,12,15
Vì (a+2) chia hết cho 8,12,15 suy ra a thuộc BC(8,12,15)
8 = 2^3
12 = 2^2 x 3
15 = 3 x 5
Vậy BCNN(8,12,15) = 2^3 x 3 x 5 = 120
=> BC(8,12,15) = { 0 ; 120 ; 240 ; 360 ; 480 ; 600 ; .... }
=> a thuộc { 118 ; 238 ; 358 ; 478 ; 598 ; ... } ( Này dễ hiểu nhé bạn , vì (a+2) thuộc những số { 0 ; 120 ; ... } nên a bằng những số đó trừ 2 )
Vì a chia hết cho 23 và nhỏ nhất
=> a thuộc { 598 }
Vậy STN cần tìm là 598.
Tương tự giải bài b nhé
Tìm số tự nhiên nhỏ nhất chia cho 8, 10 , 15, 20 có só dư lần lượt là 5, 7, 12, 17 và chia hết cho 41
Gọi a là số tự nhiên nhỏ nhất cần tìm :
Theo bài ra, ta có:
a \(⋮8\)(dư 5 )
\(a⋮10\left(dư7\right)\)
\(a⋮15\left(dư12\right)\)
\(a⋮20\left(dư17\right)\)
Ta tìm BCNN ( \(8;10;15;20\))
8=23
10=2.5
15=3.5
20=22.5
Nên BCNN là : 120
Lại có: \(a⋮41\)nên \(a=41.k\left(k\in N\right)\)
\(\Rightarrow n+3=41k+3\)
\(\Rightarrow41k+3⋮120\)
\(\Rightarrow41k⋮120-3\)
\(\Rightarrow41k⋮117\)
\(\Rightarrow a⋮117\)
Theo bài thì ta có:
\(a⋮41vs117\)
\(\Rightarrow a\in BC\left(41vs117\right)\)
Vì a là \(ℕ\)nhỏ nhất thuộc BC của 41 và 117
\(\Rightarrow a=BCNN\left(41;117\right)\)
Mà 41 và 117 là hai số nguyên tố trùng nhau nên BCNN ( 41;117 ) = 4797
Vậy số cần tìm là 4797