K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

\(2222^{5555}+5555^{2222}\)

\(=3^{5555}+4^{2222}\)

\(=243^{1111}+16^{1111}\)

\(=5^{1111}+2^{1111}\)

\(=\left(-2\right)^{1111}+2^{1111}\)

\(=0\left(mod7\right)\) (chia hết cho 7)

12 tháng 8 2016

sao 2 cái đó lại bằng nhau đc

13 tháng 12 2019

Bạn tham khảo tại đây nhé:

Chứng minh 2222^5555+5555^2222 chia hết cho 7 - Nguyễn ...

Chúc bạn học tốt!

13 tháng 12 2019

ơ thế mình gợi ý bằng không à .-. mình tìm trên mạng rồi mà không có cách đó nên mới nhờ các bạn chứ :vv

4 tháng 8 2015

  2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2 
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7) 

5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2 
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7) 

vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm 

30 tháng 12 2016

viết dấu đồng quy ở đâu zậy bn

17 tháng 7 2018

cách 1
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7

cách 2 ta có công thức (a+b)^n =a^n +a^(n-1).b...............b^n (n chẳn)
(a-b)^n = a^n+...............+-b^b(n lẻ)
(2222^5555) + (5555^2222)
=(7.317 +3)^5555 + (7.793+4)^2222
=7K+3^5555 +7P+4^2222
=7K+7P +(3^5)^1111 + (4^2)^1111
=7P+7k +(259)U chia hết cho 7
bạn có thể tham khảo 2 cách

24 tháng 4 2018

Ta có 2222 + 4 \(⋮\) 7 => 2222 ≡ - 4 (mod 7) => 22225555 ≡ (- 4)5555(mod 7)

5555 - 4 \(⋮\)7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7)

=> 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7)

Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222

= (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1)

Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63 7 => 43 - 1 ≡ 0 (mod 7) (2)

Nên (- 4)5555 + 42222 ≡ 0 (mod 7)

Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7.