Cho tam giác ABC vuông tại A và M là trung điểm của AC. kẻ MD vuông góc BC tại D . Chứng minh AB2 = BD2 - CD2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nhe
a, Xét tứ giác ADME có 3 góc vuông:\(MDA=DAE=MEA=90^o\)
do đó : ADME là hình chữ nhật.
b, Xét tam giác ABC có đường t.b ME (1)
lại có M là trung điểm BC và ME//DA
=> D là trung điểm của AB (2)
từ (1) và (2) suy ra:
\(ME=\dfrac{1}{2}AB\)
hay ME=DB và ME//DB
vậy tứ giác ADME là hình bình hành
c,
Xét tam giác EHD và tam giác EAD có
DE cạnh chung
AD=DH(gt)
góc HED = góc AED (gt)
do đó 2 tam giác EHD và EAD = nhau
=> HE = AE ( 2 cạnh tương ứng )(3)
Xét hình chữ nhật ADME có :
DM= AE ( 2 cạnh đối = nhau )(4)
từ (3) và (4) suy ra :
HE=DM
Xét tứ giác DEMH có :
HE =DM (cmt)
do đó : DEMH là hình thang cân ( 2 đường chéo = nhau ).
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
Ta có 2MC=AC( Vì Mlà tđiểm của AC)
=> 2MC.AC=AC2
Ta có: tam giác MDC đồng dạng tam giác BAC nên (MC/BC)=(DC/AC)
=>MC.AC=BC.DC
=>2MC.AC=2BC.CD
=>AC2 =2BC.CD
=>BC2 -AC2 =BC2 -2BC.CD
=>AB2 =BC(BC-CD-CD)=BC(BD-CD)=(BD+DC)(BD-CD)
=>AB2 =BD2-CD2 (ĐPCM)
Em xin lỗi vì em học lớp 6 nha. Sorry!