Cho C={ 1/52 ;1/53 ;1/54 ;1/55 ;1/56 ; . . . . . . . . . . ;1/100 }
Hãy so sánh C với 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề nek
Tìm các số tự nhiên a,b,c sao cho:
\(\frac{52}{9}=\frac{5+1}{a}+\frac{1}{b+c}\)
Ta có B = \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2014}}\)
=> 4B = \(1+\frac{1}{4}+...+\frac{1}{4^{2013}}\)
Lấy 4B trừ B theo vế ta có :
4B - B = \(\left(1+\frac{1}{4}+...+\frac{1}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2014}}\right)\)
=> 3B = \(1-\frac{1}{4^{2014}}\)
=> B = \(\left(1-\frac{1}{4^{2014}}\right):3=\frac{1}{3}-\frac{1}{3.4^{2014}}\)
Lại có C = \(\frac{1}{52}\left(\frac{35}{1.3}+\frac{35}{3.5}+...+\frac{35}{103.105}\right)=\frac{1}{52}.\frac{35}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{103.105}\right)\)
\(=\frac{35}{104}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{103}-\frac{1}{105}\right)\)
\(=\frac{35}{104}.\left(1-\frac{1}{105}\right)=\frac{35}{104}.\frac{104}{105}=\frac{1}{3}\)
Vì \(\frac{1}{3}-\frac{1}{3.4^{104}}< \frac{1}{3}\Rightarrow B< C\)
Vậy B < C
Ta có \(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}\)
=\(5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}\)
\(=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)
Vậy a = 1
b=3
c=2
Ta có :
\(\frac{52}{9}=5+\frac{7}{9}\)
\(\frac{7}{9}=\frac{1}{\frac{9}{7}}=\frac{1}{1+\frac{2}{7}}\)
\(\frac{2}{7}=\frac{1}{\frac{7}{2}}=\frac{1}{1+\frac{5}{2}}\)
\(\frac{5}{2}=\frac{1}{\frac{2}{5}}\)
\(\Rightarrow\frac{52}{9}=5+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{2}{5}}}}\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=1\\c=\frac{2}{5}\end{cases}}\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+\frac{1}{18\cdot19\cdot20}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+\frac{2}{18\cdot19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\cdot\frac{189}{380}=\frac{189}{760}\)
\(C=\frac{52}{1\cdot6}+\frac{52}{6\cdot11}+\frac{52}{11\cdot16}+...+\frac{52}{31\cdot36}\)
\(C=\frac{52}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{6}{31\cdot36}\right)\)
\(C=\frac{52}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{31}-\frac{1}{36}\right)\)
\(C=\frac{52}{5}\cdot\left(1-\frac{1}{36}\right)\)
\(C=\frac{91}{9}\)
a) Ta có: \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2\right\}\)
b) Ta có: x(3x+9)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3\right\}\)