K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 6 2021

Lời giải:

a) Sửa lại thành $\triangle ABM=\triangle ACM$ 

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (do $ABC$ là tam giác cân tại $A$)

$\widehat{ABM}=\widehat{ACM}$ (do $ABC$ là tam giác cân tại $A$)

$AM$ chung

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b) Từ tam giác bằng nhau trên suy ra:

$\widehat{BAM}=\widehat{CAM}$ nên $AM$ là phân giác $\widehat{BAC}$

AH
Akai Haruma
Giáo viên
12 tháng 6 2021

Hình vẽ:

a: Xét ΔAMB và ΔDMC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

Suy ra: AB=CD

c: Xét ΔABC có 

AM là đường trung tuyến ứng với cạnh BC

AM là đường phân giác ứng với cạnh BC

Do đó: ΔABC cân tại A

15 tháng 4 2021

Dễ và cơ bản mà nhỉ:vv

a) Xét ∆ABM và ∆ACM:

AB=AC (∆ABC cân tại A)

BM=CM (AM là trung tuyến)

\(\widehat{ABM}=\widehat{ACM}\) (∆ABC cân tại A)

=> ∆ABM=∆ACM (c.g.c)

b) Theo câu a: ∆ABM=∆ACM 

=> \(\widehat{AMB}=\widehat{AMC}\)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^o\)

=> AM vuông góc với BC

c) M là trung điểm của BC

=> \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\)

Áp dụng định lý Py-ta-go vào ∆ABM, ta có:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow5^2=AM^2+3^2\Rightarrow AM^2=5^2-3^2=16=4^2\)

\(\Rightarrow AM=4\) (cm)

Vậy AM=4cm.

b) Cm theo cách khác:

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC(đpcm)

19 tháng 10 2018

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

4 tháng 1 2022

a) Xét tam giác ABM và tam giác ACM:

+ AM chung.

+ AB = AC (gt).

+ MB = MC (M là trung điểm của BC).

\(\Rightarrow\) Tam giác ABM = Tam giác ACM (c - c - c).

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.Mà AM là trung tuyến (M là trung điểm của BC).​\(\Rightarrow\) AM là tia phân giác của góc BAC (Tính chất tam giác cân).​

a: M là trung điểm của BC

=>AM là đường trung tuyến của ΔABC

b: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

c: Sửa đề; tam giác ABC

AB=AC

BM=CM

=>AM là trung trực của BC