Cho tam giác ABC có b = 7; c = 5, cosA = 3/5. Đường cao ha của tam giác ABC là
A.
B. 6.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: cosC = a 2 + b 2 − c 2 2 a b = 6 2 + 7 2 − 10 2 2.6.7 < 0
⇒ C ^ > 90 0
Suy ra, tam giác ABC là tam giác tù.
Chọn B
Nửa chu vi của tam giác ABC là: p = 5 + 6 + 7 2 = 9
Áp dụng công thức Hê- rông, diện tích tam giác ABC là:
S = 9. 9 − 5 . 9 − 6 . 9 − 7 = 36.6 = 6 6 .
Chọn C.
\(\widehat{A}=180^o-30^o-44^o=106^o.\)
Áp dụng định lý sin ta có:
\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}.\)
\(\Rightarrow\dfrac{BC}{sin106^o}=\dfrac{7}{sin44^o}=\dfrac{AB}{sin30^o}.\)
\(\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{7.sin106^o}{sin44^o}\approx9,7.\\AB=\dfrac{7.sin30^o}{sin44^o}\approx5,0.\end{matrix}\right.\) (đvđd).
\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\sin A\approx\dfrac{1}{2}.5,0.7.\sin106^o\approx17,4\) (đvdt).
\(S=pr=\dfrac{AB+AC+BC}{2}.r.\\ \Rightarrow17,4\approx\dfrac{5,0+7+9,7}{2}.r.\)
\(\Rightarrow r\approx1,6\) (đvđd).
a. Do BC > AC > AB ⇒ ∠A > ∠B > ∠C
Ta có AB2 + AC2 = 62 + 82 = 100 = 102 = BC2
Vậy tam giác ABC vuông tại A (1 điểm)
\(A^o,B^o,C^o\)lần lượt tỉ lệ với 7:7:16
\(\Rightarrow\frac{A^o}{7}=\frac{B^o}{7}=\frac{C^o}{16}\)và \(A^o+B^o+C^o=180^o\)( Tổng 3 góc trong của tam giác )
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{A^o}{7}=\frac{B^o}{7}=\frac{C^o}{16}=\frac{A^o+B^o+C^o}{7+7+16}=\frac{180^o}{30}=6^o\)
=> góc A = 42o , góc B = 42o , góc C = 96o
Chọn A.
Áp dụng định lí cosin trong tam giác ta có:
a2 = b2 + c2 = 2bc.cosA = 72 + 52 - 2.7.5.3/5 = 32
Nên
Mặt khác: sin2A + cos2A = 1 nên sin2A = 1 - cos2A = 16/25
Mà sinA > 0 nên sinA = 4/5
Mà: