Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB<BC<AC (vì 6<8<10)
=> góc C < góc A < góc B (quan hệ giữa góc và cạnh đối diện)
b) Nhận thấy: \(AB^2+BC^2=6^2+8^2=36+64=100\)
\(AC^2=10^2=100\)
\(\Rightarrow AB^2+BC^2=AC^2\left(=100\right)\)
Theo định lí Pi-ta-go đảo thì tam giác ABC có độ dài 3 cạnh như trên là tam giác vuông.
c)
Ta có: MA + MC < AC (bất đẳng thức trong tam giác ACM)
=> MA + MC < AC + AB (ĐPCM)
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
VẼ HÌNH (đề câu b sai ;Gọi _D_ là giao điểm của hai tia BA và ME .......... MỚI ĐÚNG )
___a) Xét tam giác BEA và tam giác BEM ,co :
BE la canh chung
BA=BM (gia thiet) (1)
gocABE = gocMBE (vi BE la tia phan giac cua gocABC)
Do đo : tam giác BEA = tam giác BEM (c-g-c)
=> gocBME=gocBAE=90do (2 góc tương ứng)
=> EM vuông góc với BC
___b) Xet :tam giác ADE và tam giác MCE ,co :
góc A = góc M = 90do (cmt)
gócAED=gocMEC( 2 góc đối đỉnh)
AE=ME ( 2 canh tuong ung cua tam giac BEA =tam giác BEM )
Do đo: tam giác ADE =tam giác MCE(g-c-g)
=>AD=MC ( 2canh tương ứng) (2)
Ta có : BD = BA + AD ( A nam giua B va D)
} (3)
: BC = BM + MC ( M nằm giữa B và C)
Từ (1) , (2) va (3) suy ra BD =BC
___c) Kẻ tia BE cắt đoạn thẳng DC tại H
Ta có : BD=BC (chứng minh trên)
=> tam giác BDC là tam giác cân tại B
=>gocBDC =gocBCD ( Vi tam giác cân có 2 góc ở đáy = nhau ) .
b) Ta có : ABO + CBO = 36 độ
=> ABO + 12 độ = 36 độ
=> ABO = 24 độ
ABM + AOB = 60 độ
=> ABM + 24 độ = 60 độ
=> ABM = 36 độ
Ta thấy : MOC + COB + MOB = 360 độ
=> 150 độ + 60 độ + COM = 360 độ
=> COM = 150 độ
Xét tam giác COM có : MOC + OCM + OMC = 180 độ
=> 150 độ + OMC + 18 độ = 180 độ
=> OMC = 12 độ
AMB = OMB + OMC
=> AMB = 60 độ + 12 độ
=> AMB = 72 độ
Xét tam giác AMB có : AMB + ABM + MBA = 180 độ
=>72 độ + 36 độ + MAB = 180 độ
=> MAB = 72 độ
Ta có : MAB + BAC = 108 độ + 72 độ = 180 độ
=> A , M , B thẳng hàng
CÂU C BẠN TỰ LÀM ĐI
a. Do BC > AC > AB ⇒ ∠A > ∠B > ∠C
Ta có AB2 + AC2 = 62 + 82 = 100 = 102 = BC2
Vậy tam giác ABC vuông tại A (1 điểm)