Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thấy rằng $u_n>0$ với mọi $n\in\mathbb{N}^*$
\(\frac{u_{n+1}}{u_n}=\frac{\sqrt{n+12}}{n+1}: \frac{\sqrt{n+11}}{n}=\frac{\sqrt{n^2(n+12)}}{\sqrt{(n+1)^2(n+11)}}=\sqrt{\frac{n^3+12n^2}{n^3+13n^2+23n+11}}<1\) với mọi $n\in\mathbb{N}^*$
$\Rightarrow u_{n+1}< u_n$ với mọi $n\in\mathbb{N}^*$
$\Rightarrow (u_n)$ là dãy giảm.
Lời giải:
Với $n$ lẻ bất kỳ:
$u_n<0; u_{n+1>0; u_{n+2}< 0$
$\Rightarrow u_n< u_{n+1}> u_{n+2}$ với mọi $n$ lẻ bất kỳ
Do đó dãy không tăng cũng không giảm.
Lời giải:
Có:
\(u_{n+1}-u_n=\sqrt{n+4}-\sqrt{n+1}-(\sqrt{n+3}-\sqrt{n})\)
\(=(\sqrt{n+4}-\sqrt{n+3})-(\sqrt{n+1}-\sqrt{n})\)
\(=\frac{1}{\sqrt{n+4}+\sqrt{n+3}}-\frac{1}{\sqrt{n+1}+\sqrt{n}}<0\) với mọi $n\in\mathbb{N}^*$
$\Rightarrow u_{n+1}< u_n$ với mọi $n\in\mathbb{N}^*$
Do đó dãy đã cho là dãy giảm.