Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A \rightarrow B+ _2^4He\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{A} =\overrightarrow P_{B} + \overrightarrow P_{\alpha} \)
Mà ban đầu hạt A đứng yên => \(\overrightarrow P_{A} = \overrightarrow 0\)
=> \(\overrightarrow P_{B} + \overrightarrow P_{\alpha} = \overrightarrow 0 .\)
=> \(P_B = P_{\alpha}\)
Mà \(P_{\alpha}^2 = 2m_{\alpha}K_{\alpha};P_B^2 = 2m_BK_B \)
=> \(2m_{\alpha}K_{\alpha}=2m_BK_B \)
=> \(\frac{K_B}{K_{\alpha}}= \frac{m_{\alpha}}{m_B}.\)
\(Ra \rightarrow Rn+\alpha\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{Ra} =\overrightarrow P_{Rn}+ \overrightarrow P_{\alpha} \)=> \(\overrightarrow P_{Rn}+ \overrightarrow P_{\alpha} =\overrightarrow 0\) (do ban đầu Ra đứng yên)
=> \(P_{Rn}= P_{\alpha} \)
mà \(P ^2 = 2mK\)
=> \(2m_{Rn}K_{Rn}=2m_{\alpha} K_{\alpha} \)
=> \(221,970.K_{Rn}= 4,0015.K_{\alpha}.(1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_{Ra}+m_{Ra}c^2 = K_{Rn} + m_{Rn}c^2+ K_{\alpha}+m_{\alpha}c^2\)
=> \(m_{Ra}c^2-m_{Rn}c^2-m_{\alpha}c^2 = K_{Rn} + K_{\alpha}\), ( do \(K_{Ra}=0\))
=> \( K_{Rn} + K_{\alpha}=(m_{Ra}-m_{Rn}-m_{\alpha})c^2\)
\(=(225,977 - 221,970 - 4,0105) uc^2= 5,12325 MeV. (2)\)
Từ (1) và (2) ta có hệ 2 phương trình 2 ẩn \(K_{\alpha}; K_{Rn}\) .Bấm máy tính cầm tay
\(K_{\alpha} = 5,03 MeV; K_{Rn} = 0,09 MeV. \)
\(_0^1n + _3^6 Li \rightarrow X + \alpha\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_n=\overrightarrow P_{\alpha}+ \overrightarrow P_{X} \)
Dựa theo hình vẽ ta có : \(P_{X}^2+ P_{He}^2 = P_n^2\)
=> \(2m_{X}K_{X}+2m_{\alpha} K_{\alpha} = 2m_{n}K_{n}. \)
=> \(3,01600K_{X}+4,0016 K_{\alpha} = 1,00866K_{n} = 1,109526MeV.\ \ (1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_{n}+m_{n}c^2+m_{Li}c^2 = K_{\alpha} + m_{\alpha}c^2+ K_{X}+m_{X}c^2\)
=> \(K_{\alpha} + K_{X}=K_{n}+(m_{n}+m_{Li}-m_{\alpha}-m_{X})c^2 = 1,1 + 1,36 = 0,299 meV.\ \ (2)\)
Từ (1) và (2) giải hệ phương trình
\(K_{\alpha} = 0,21 MeV; K_{X }= 0,09 MeV.\)
\(m_t = m_{\alpha}+ m_{Al}= 30,97585u.\)
\(m_s = m_P+ m_n = 30,97872u.\)
\(m_t < m_s\), phản ứng là thu năng lượng.
Năng lượng thu vào là
\(E= (m_s-m_t)c^2 = 2,87.10^{-3}uc^2= 2,87.10^{-3}931 MeV/c^2.c^2 = 2,67197MeV \)
Đổi \(1 MeV = 10^6.1,6.10^{-19}J \)
=> \(2,67197 MeV= 4,275152 .10^{-13}J.\)
Tóm lại thu năng lượng \(2,67197 MeV\) hoặc thu \(4,275152 .10^{-13}J.\)
mt=ma+mAL=30,97585u
ms=mp+mn=30,97872u
mt<ms,PHẢN ỨNG LÀ THU NĂNG LƯỢNG
NĂNG LƯỢNG THU VÀO LÀ:
E=(ms-mt)c2=2,87.10-3uc2=2,87.10-3931MeV/c2.c2=2,67197 MeV
Đổi 1 MeV=106.1,6.10-19J
Suy ra:2,67197MeV=4,275152.10-3J
Đáp số:2,67197MeV hoặc 4,275152.10-13J
bạn ơi bài chỉ hỏi tính động năng hạt alpha chứ k có hỏi tỉ lệ bạn nhé
dù sao cx cảm ơn
Năng lượng của điện tử ở trạng thái dừng n: \(E_n =-\frac{13,6}{n^2}.(eV)\)
Hai vạch đầu tiên trong dãy Lai-man tương ứng với
vạch 1: Từ L (n = 2) về K (n = 1): \(hf_1 = E_2-E_1.(1)\)
vạch 2: Từ M (n = 3) về K (n = 1): \(hf_2 = E_3-E_1.(2)\)
Vạch đầu tiên trong dãy Ban-me ứng với
Từ M (n = 3) về L (n = 2): \(hf_{\alpha}= E_3-E_2.(3)\)
Lấy (1) trừ đi (2), so sánh với (3) ta có : \(hf_2-hf_1 = hf_{\alpha}\)=> \(f_{\alpha}=f_2-f_1. \)
Do hạt nhân mẹ Po ban đầu đứng yên, áp dụng định luật bảo toàn động lượng trước và sau phản ứng ta thu được
\(P_{\alpha} = P_{Pb} \)
=> \(2m_{\alpha} K_{\alpha}=2m_{Pb}K_{Pb} \)
=> \( 4,0026.K_{\alpha}=205,9744.K_{Rn}.(1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần có
\(K_{\alpha}+K_{Pb} = (m_t-m_s)c^2\)
=> \(K_{\alpha}+K_{Rn} = (m_{Po}-m_{\alpha}-m_{Pb})c^2= 0,0058.931,5 = 5,4027 MeV. (2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_{\alpha} = 5,2997 MeV; K_{Pb} = 0,103 MeV. \)
=> \(v_{Pb}= \sqrt{\frac{2K_{Pb}}{m_{Pb}}} =\sqrt{\frac{2.0,103.10^6.1,6.10^{-19}}{205,9744.1,66055.10^{-27}}} = 3,06.10^5m/s.\)
Chú ý đổi đơn vị \(1 MeV = 10^6.1,6.10^{-19}J ; 1 u = 1,66055.10^{-27} kg.\)
\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)
Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)
=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)
=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)
Với \(P^2 = 2mK, m=A.\).
=> \(\alpha = 90^0.\)
\(X \rightarrow Y + \alpha\)
Hạt nhân mẹ đứng yên nên ta có \(P_{Y}= P_{\alpha} \)
=> \(m_{Y}K_{Y}=m_{\alpha} K_{\alpha} \)
=> \(\frac{K_Y}{K_{\alpha}} = \frac{m_{\alpha}}{m_Y}\)