Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Số phần tử của không gian mẫu:
Gọi A là biến cố: “cặp sinh đôi ngồi cạnh nhau và nam nữ không ngồi đối diện nhau”.
Ta tính n() như sau:
Đánh số các ghế ngồi của 8 học sinh như hình vẽ sau:
- Để xếp cho cặp sinh đôi ngồi cạnh nhau có 6 cách.
- Mỗi cách như vậy có cách đổi chỗ.
- Với mỗi cách xếp cặp sinh đôi, ví dụ: Cặp sinh đôi ở vị trí 1 và 2.
Do nam nữ không ngồi đối diện nên:
+ Vị trí 5 và 6 đều có 3 cách.
+ Vị trí 3 có 4 cách, vị trí 7 có 1 cách.
+ Vị trí 4 có 2 cách, vị trí 8 có 1 cách.
Suy ra n(A) = 6.2.3.3.4.1.2.1 = 864
Đáp án B
Số cách xếp 10 học sinh vào 10 ghế là: 10!
4 bạn nữ chỉ có thể xếp vào các vị trí N1,N2,N3,N4
Nếu Huyền ở vị trí N1 thì có 3! cách xếp 3 bạn nữ còn lại
Quang có 5 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại
Vậy có 3!.5.5! = 3600 cách xếp
Tương tự nếu Huyền ở vị trí N4 cũng có 3600 cách xếp
Nếu Huyền ở vị trí N2 thì có 3! cách xếp 3 bạn nữ còn lại
Quang có 4 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại
Vậy có 3!.4.5! = 2880 cách xếp
Tương tự nếu Huyền ở vị trí N3 cũng có 2880 cách xếp
Vậy có 2(3600+2880) = 12960 cách xếp thỏa mãn đề bài
⇒ p = 12960 10 ! = 1 280
Đáp án B
Kí hiệu 10 ghế như sau:
Trong đó: D là ghế đỏ (dành cho nữ) và X là ghế xanh (dành cho nam)
+ Số cách xếp nữ vào ghế đỏ, nam vào ghế xanh là M = 4!6!
+ Số cách xếp sao cho Quang được ngồi cạnh Huyền (kí hiệu là N)
- Chọn 2 ghế liên tiếp khác màu: C 6 1 cách
- Xếp Quang và Huyền vào 2 ghế đó (1 cách) và xếp các bạn kia vào các ghế còn lại (3!5! cách)
=> N = 3!5!.6 => N = 3!.6!
+ Số cách xếp thỏa mãn điều kiện đề bài là M – N = 12960 cách
Xác suất cần tìm là 12960 10 ! = 1 280 .
Chọn B
Số phần tử của không gian mẫu là số cách sắp xếp 8 học sinh vào 8 chỗ ngồi khác nhau. Suy ra n ( Ω ) = 8!
Gọi A là biến cố xếp 8 học sinh sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau. Ta đánh số các chỗ ngồi từ 1 đến 8 như sau:
Dãy 1:
1 |
2 |
3 |
4 |
Dãy 2:
8 |
7 |
6 |
5 |
Để sắp xếp các học sinh ngồi vào vị trí thỏa mãn yêu cầu bài toán ta sắp xếp như sau:
Trường hợp 1: 4 học sinh nam ngồi vào các số lẻ, 4 học sinh nữ ngồi vào các số chẵn. Trường hợp này có 4!4! cách.
Trường hợp 2: 4 học sinh nam ngồi vào các số chẵn, 4 học sinh nữ ngồi vào các số lẻ. Trường hợp này có 414! cách.
Do đó n(A) = 2.4!.4!
Vậy xác suất của biến cố A là
Chọn C
Số phần tử của không gian mẫu: .
Gọi biến cố : “Xếp 10 học sinh vào 10 ghế sao cho mỗi học sinh nam đều ngồi đối diện một học sinh nữ”.
Giả sử đánh vị trí ngồi như bảng sau:
Cách 1: Xếp vị trí A 1 có 10 cách. Mỗi cách xếp vị trí A 1 sẽ có 5 cách xếp vị trí B 1 .
Mỗi cách xếp vị trí A 1 , B 1 có 8 cách xếp vị trí , tương ứng sẽ có 4 cách xếp vị trí B 2 .
Cứ làm như vậy thì số cách xếp thỏa mãn biến cố là:
Cách 2: Đánh số cặp ghế đối diện nhau là C1, C2, C3, C4, C5
Xếp bạn nam vào 5 cặp ghế có 5! cách.
Ở mỗi cặp ghế, ta có 2 cách xếp một cặp nam, nữ ngồi đối diện.
Số phần tử của A là:
xếp ngẫu nhiên 8 bạn học sinh vào 4 bàn có 8! cách 40320 cách
=> \(n\left(\Omega\right)=40320\)
Gọi A:" có đúng 2 bàn mà trong đó mỗi bàn gồm 1 nam và 1 nữ "
=> \(n\left(A\right)=C^1_4.C^1_4..4.C^1_3.C^1_3.3.C^2_2.2.C^2_2.1=3456\) cách
=> P(A)= 3456/40320 =3/35