Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
Ta có :
\(\frac{x^3}{8}\)= \(\frac{y^3}{64}\)= \(\frac{z^3}{216}\) \(\Rightarrow\)\(\frac{x^3}{2^3}\)= \(\frac{y^3}{4^3}\)= \(\frac{z^3}{6^3}\)\(\Rightarrow\)\(\frac{x^2}{2^2}\)=\(\frac{y^2}{4^2}\)=\(\frac{z^2}{6^2}\)
và có : \(^{x^2+y^2+z^2=224}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{224}{56}=4\)
=> \(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x\in4;-4\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y\in8:-8\)
\(\frac{z^2}{36}=4\Rightarrow z^2=144\Rightarrow z\in12:-12\)
Vì \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)nên x,y,z cùng dấu
Vậy \(x,y,z\in\left(4;8;12\right);\left(-4;-8;-12\right)\)
Theo bài ra ta có : \(x^2+y^2+z^2=14\)
\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\\ \Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\\ \Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\\ \Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{4}=\dfrac{1}{4}\\\dfrac{y^2}{16}=\dfrac{1}{4}\\\dfrac{z^2}{36}=\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy \(xyz=\left\{\pm1;\pm2;\pm3\right\}\)