Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình x 2 - m x + m 2 - 3 = 0 có hai nghiệm x 1 , x 2 là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 2 khi và chỉ khi:
Δ = m 2 − 4 m 2 + 12 ≥ 0 S = x 1 + x 2 = m > 0 P = x 1 . x 2 > 0 x 1 2 + x 2 2 = 4 ⇔ 3 < m ≤ 4 m > 0 x 1 + x 2 2 − 2 x 1 x 2 = 4
⇔ 3 < m ≤ 2 m 2 − 2 m 2 − 3 = 4 ⇔ 3 < m ≤ 2 m 2 = 2 ⇔ m ∈ ∅
Đáp án cần chọn là: D
Hình như đề thiếu, pt: \(x^2-\left(m+1\right)x+m-2=0\)
Phương trình đã cho có nghiệm khi \(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2-2m+9>0\)
\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị m
Định lí Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m-2\end{matrix}\right.\)
a, Theo giả thiết ta có: \(x_1^2+x_2^2=100\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=100\)
\(\Leftrightarrow\left(m+1\right)^2-2\left(m-2\right)=100\)
\(\Leftrightarrow m^2+2m+1-2m+4=100\)
\(\Leftrightarrow m^2=95\)
\(\Leftrightarrow m=\sqrt{95}\)
b, \(P=\left|x_1-x_2\right|\)
\(P^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(m+1\right)^2-4\left(m-2\right)\)
\(=m^2-2m+9=\left(m-1\right)^2+8\ge8\)
\(\Rightarrow P=\left|x_1-x_2\right|\ge2\sqrt{2}\)
\(minP=2\sqrt{2}\Leftrightarrow m=1\)
\(\text{Δ}=\left(2m-6\right)^2-4\left(m^2+3m+2\right)\)
\(=4m^2-24m+36-4m^2-12m-8=-36m+28\)
Để phương trình có hai nghiệm thì -36m+28>=0
=>-36m>=-28
hay m<=7/9
Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2=100\)
\(\Leftrightarrow\left(\dfrac{2m-6}{m+1}\right)^2-2\cdot\dfrac{m+2}{m+1}=100\)
\(\Leftrightarrow\dfrac{\left(2m-6\right)^2-2\left(m^2+3m+2\right)}{\left(m+1\right)^2}=100\)
\(\Leftrightarrow4m^2-24m+36-2m^2-6m-4=100\left(m+1\right)^2\)
\(\Leftrightarrow50\left(m+1\right)^2=m^2-15m+16\)
\(\Leftrightarrow50m^2+100m+50-m^2+15m-16=0\)
\(\Leftrightarrow49m^2+115m+34=0\)
\(\text{Δ}=115^2-4\cdot49\cdot34=6561\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-115-81}{2\cdot49}=-2\left(nhận\right)\\m_2=\dfrac{-115+81}{2\cdot49}=-\dfrac{17}{49}\left(nhận\right)\end{matrix}\right.\)
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
\(\Delta'=\left(m+1\right)^2-\left(5m+1\right)=m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5m+1\end{matrix}\right.\)
a.
\(S=\left(x_1+x_2\right)^2-3x_1x_2=4\left(m+1\right)^2-3\left(5m+1\right)\)
\(=4m^2-7m+1=\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2+1\ge1\)
\(S_{min}=1\) khi \(\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2=0\Rightarrow m=0\)
b.
\(1< x_1< x_2\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\x_1+x_2>2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5m+1-2\left(m+1\right)+1>0\\2\left(m+1\right)>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>0\\m>-1\end{matrix}\right.\) \(\Rightarrow m>0\)
Kết hợp điều kiện delta \(\Rightarrow m\ge3\)
\(a,\Leftrightarrow\Delta\ge0\Leftrightarrow\left(2m+2\right)^2-4\left(5m+1\right)\ge0\Leftrightarrow4m^2-12m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge3\end{matrix}\right.\)
\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1x2=5m+1\end{matrix}\right.\)
\(\Rightarrow S=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)
\(=\left(2m+2\right)^2-3\left(5m+1\right)=4m^2-7m+1\)
\(=\left(2m\right)^2-2.2.\dfrac{7}{4}.m+\left(\dfrac{7}{4}\right)^2-\dfrac{33}{16}=\left(2m-\dfrac{7}{4}\right)^2-\dfrac{33}{16}\left(1\right)\)
\(TH1:m\ge3\Rightarrow\left(1\right)\ge\left(2.3-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=16\)
\(TH2:m\le0\Rightarrow\left(1\right)\ge\left(0-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=1\)
\(\Rightarrow MinS=1\Leftrightarrow m=0\left(tm\right)\)
\(b,1< x1< x2\Leftrightarrow0< x1-1< x2-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-1\right)\left(x2-1\right)>0\\x1+x2-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\\\left\{{}\begin{matrix}x1 < 1\\x2< 1\end{matrix}\right.\end{matrix}\right.\\2m+2-2>0\\\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}x1x2>1\\x1x2< 1\end{matrix}\right.\\m>0\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>0\\m< 0\end{matrix}\right.\\m>0\\\end{matrix}\right.\Rightarrow m>3\)
Để phương trình có 2 nghiệm phân biệt :
\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)
\(< =>4+4m>0\)
\(< =>4m>-4\)
\(< =>m>-1\)
Δ=(-2)^2-4(1-3m)
=4-4+12m=12m
Để PT có hai nghiệm thì 12m>=0
=>m>=0
Theo đề, ta có: \(x_1^2+x_2^2=3\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=3\)
=>\(2^2-2\left(1-3m\right)=3\)
=>4-2+6m=3
=>6m=1
=>m=1/6