K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Gọi x(1), x(2) là 2 nghiệm của pt 
Theo đề bài : x(2)=x(1)^2 
Áp dụng Vi-et : 
x(1).x(2) = x(1)^3 = c/a = (m-1)^3 ( vì x(2)=x(1)^2 ) 
rút căn bậc ba hai vế, ko ảnh hưởng về dấu 
<=> x(1)= m-1 (*) 

Ta lại có : 
x(1)+x(2)= x(1)^2 + x(1) = -b/a = 2m 

Thế (*) vào 
=> (m-1)^2 + m-1=2m 
=>m^2 - 3m =0 <=> m=3 hoặc m=0

Nếu em đúng thì anh k em nhé

16 tháng 5 2017

dễ mà bạn,,,

bạn tự tính delta nha,,,,.Ta có

\(\hept{\begin{cases}x1+x2=2\\\left(x1\right)^2=x2\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x1\right)^2+x1=2\\\left(x1\right)^2=x2\end{cases}}}\)

1 CTV như bạn chác có thể lm đc tiếp :))

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

19 tháng 5 2020

\(x^2-2mx+\left(m-1\right)^3=0\left(1\right)\)

PT (1) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2-\left(m-1\right)^3>0\)(*)

Giả sử phương trình có 2 nghiệm phân biệt là u, u2 thì theo Vi-et ta có:

\(\hept{\begin{cases}u+u^2=2m\\u\cdot u^2=\left(m-1\right)^2\end{cases}}\)(**)

(**)\(\Leftrightarrow\hept{\begin{cases}u+u^2=2m\\u^3=\left(m-1\right)^3\end{cases}\Leftrightarrow\hept{\begin{cases}u+u^2=2m\\u=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}m-1+\left(m-1\right)^2=2m\\u=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}m^2-3m=0\\u=m-1\end{cases}}}\)

PT \(m^2-3m=0\Leftrightarrow m\left(m-3\right)=0\Leftrightarrow m_1=0;m_2=3\left(tmđk\right)\)

Vậy m=0; m=3 là 2 giá trị cần tìm

26 tháng 5 2020

a) Xét \(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+4\)

phương trình có hai nghiệm <=> \(\Delta'\ge0\Leftrightarrow-2m+4\ge0\Leftrightarrow m\le2\)(@@) 

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1x_2=m^2-3\\x_1+x_2=2\left(m-1\right)\end{cases}}\)

Không mất tính tổng quát: g/s: \(x_1=3x_2\)

=> \(4x_2=2\left(m-1\right)\Leftrightarrow x_2=\frac{m-1}{2}\)

=> \(x_1=\frac{3\left(m-1\right)}{2}\)

mà \(x_1x_2=m^2-3\)

=> \(\frac{3}{4}\left(m-1\right)^2=m^2-3\)

<=> \(3\left(m^2-2m+1\right)=4m^2-12\)

<=> \(\orbr{\begin{cases}m=-3+2\sqrt{6}\\m=-3-2\sqrt{6}\end{cases}}\) thỏa mãn 

Vậy ....

30 tháng 4 2020

\(\Delta=\left[2\left(m+1\right)\right]^2-4m^2=4m+1\)

a) để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow4m+1>0\Leftrightarrow m>\frac{-1}{4}\)

b) thay x = -2 vào pt , ta được :

\(\left(-2\right)^2+2\left(m+1\right)\left(-2\right)+m^2=0\)

\(\Rightarrow m^2-4m=0\Rightarrow\orbr{\begin{cases}m=0\\m=4\end{cases}}\)

30 tháng 4 2020

a) Phương trình có 2 nghiệm phân biệt:

<=> \(\Delta'=\left(m+1\right)^2-m^2>0\)

<=> m > -1/2 

Vậy....

b) Phương trình có 2 nghiệm phân biệt  trong đó có 1 nghiệm x = - 2 

Thay x = -2 vào ta có: \(m^2-4\left(m+1\right)+4=0\)

<=> m = 0 (thỏa mãn )

hoặc m = 4 ( thỏa mãn)

Vậy ...

\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m+1\right)\)

\(=4m^2-4m^2+4=4\)

Vì Δ>0 nên phương trình luôn có hai nghiệm phân biệt 

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=\dfrac{2m}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2m}{m-1}\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m}{3m-3}\\x_1=\dfrac{4m}{3m-3}\end{matrix}\right.\)

Theo đề, ta có: \(x_1\cdot x_2=\dfrac{m+1}{m-1}\)

\(\Leftrightarrow\dfrac{8m^2}{9\left(m-1\right)^2}=\dfrac{m+1}{m-1}\)

\(\Leftrightarrow8m^2=9\left(m+1\right)\left(m-1\right)\)

\(\Leftrightarrow9m^2-9-8m^2=0\)

hay \(m\in\left\{3;-3\right\}\)

24 tháng 1 2022

Cảm ơn nhiều ạ