Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)
a, Ta có
\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)
mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng bđt ta có
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)
\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..
\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)
\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)
Đặt biểu thức trên là A.
Ta có: \(\left(\sqrt{n+1}+\sqrt{n}\right)\)).(\(\sqrt{n+1}-\sqrt{n}\))=1
=>\(\frac{1}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\left(\sqrt{n+1}-\sqrt{n}\right)\)
Từ trên: \(\frac{1}{\left(2n+1\right).\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}\)
Lại có :\(\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)+n}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right).n}=\frac{1}{2}.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)(Bất đẳng thức Cô-si)
Thế số vào, ta được :
A<\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{n+1}}\right)\)=\(\frac{1}{2}.\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)
Ta có: \(n+\left(n+1\right)>2\sqrt{n\left(n+1\right)}\left(AM-GM\right)\) suy ra:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{1}{\left(2n+1\right).\frac{\left(n+1\right)-n}{\sqrt{n+1}-\sqrt{n}}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)Áp dụng vào ta có:
\(S_n< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{1}{2}-\frac{1}{2\sqrt{n+1}}< \frac{1}{2}\left(đpcm\right).\)