K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

\(a^2+b^2=a^2-2ab+b^2+2ab=\left(a-b\right)^2+2ab\)

Vì  \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2+2ab\ge2ab\left(dpcm\right)\)

1 tháng 4 2018

a) áp dụng bđt cô si cho 2 số ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (đpcm )

b) áp dụng bđt cô si dạng phân số ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)

6 tháng 4 2018

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

xét hiệu

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\ge0\)

<=>\(\dfrac{b\left(a+b\right)}{ab\left(a+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(a+b\right)}\ge0\)

<=> ab+b2+a2+ab ≥ 0

<=> a2+2ab+b2 ≥ 0

<=> (a+b)2 ≥ 0 (luôn đúng với mọi a,b)

=> đpcm

6 tháng 4 2018
https://i.imgur.com/syCj6Zy.jpg
19 tháng 5 2017

a) \(2-x\ge0\Leftrightarrow x\le2\)

b) \(2+x\ge0\Leftrightarrow x\ge-2\)

c) \(7-x\ge0\Leftrightarrow x\le7\)