K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

+) Với p=2 thì p= 2+2=4    LÀ HỢP SỐ

                       p=2+4=6     LÀ HỢP SỐ

vậy p=2 loại

+) Với p=3 thì p= 3+2 = 5 là số nguyên tố

                            3+4=7    là số nguyên tố

Vậy p=3 nhận

+) Với p<3 thì p=3k+1 hoặc 3k+2

TH1: p=3k+1 thì p=3k+ 1+ 2=3k+3 chia hết cho 3 và <3 nên p+2 là hợp số

vậy p=3k+ 1 loại

TH2: p=3k+ 2 thì p=3k+2+2=3k+ 4 chia hết cho 2 và <3 nên p+ 2  là hợp số

vậy p=3k+ 2 loại

vậy p = 3 thì p+2 và p+4 là các số nguyên tố

20 tháng 8 2018

http://sinhvienshare.com/de-thi-khao-sat-hsg-toan-6-nam-2016-2017-huyen-tien-hai-co-dap/

9 tháng 12 2016

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*) 

Ta chứng minh p+1 là số chính phương: 
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N) 
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. 
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*) 
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương 

Ta chứng minh p-1 là số chính phương: 
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2. 
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương . 

Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương

9 tháng 12 2016

ngay nao cung phai lm de met oi la met

28 tháng 4 2018

từ giả thiết , suy ra p chia hết cho 2 và 3 nhưng không chia hết cho 4 .

+) Vì p chia hết cho 3 nên p - 1 chia cho 3 dư 2 , suy ra p - 1 không là số chính phương. 

+) Vì p chia hết cho 2 nhưng không chia hết cho 4 nên p chia 4 dư 2

suy ra p + 1 chia 4 dư 3 . 

\(\Rightarrow\)p + 1 không là số chính phương

Vậy p - 1 và p + 1 không là số chính phương

13 tháng 1 2017

a) đ

b) s

c) s

d) s

e) s

f) s

29 tháng 7 2017

Đ 

S

S

S

mk học bài này rồi 

k mk nha tuy là người sau

cám ơn

29 tháng 10 2015

có chứ bạn ví dụ như 8 và 15  tick nha