Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
a.
\(\overrightarrow{EF}=\left(1;-1\right)\Rightarrow d_4\) nhận (1;-1) là 1 vtpt
Phương trình \(d_4\) :
\(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)
b.
\(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtcp nên \(d_5\) nhận \(\left(2;-1\right)\) là 1 vtpt
Pt \(d_5\) : \(2\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-7=0\)
c.
\(\Delta\) nhận \(\left(-1;-3\right)\) là 1 vtcp nên \(d_6\) nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình \(d_6\) :
\(3\left(x-4\right)-1\left(y-6\right)=0\Leftrightarrow3x-y-6=0\)
Phương trình đường thẳng denta có dạng: \(y=k\left(x-1\right)-3=kx-k-3\)
Để denta cắt 2 trục Ox, Oy tạo thành tam giác \(\Rightarrow k\ne\left\{0;-3\right\}\)
Khi đó ta có: \(A\left(\dfrac{k+3}{k};0\right)\) \(\Rightarrow OA=\left|\dfrac{k+3}{k}\right|\)
\(B\left(0;-k-3\right)\Rightarrow OB=\left|k+3\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Leftrightarrow OA.OB=4\)
\(\Leftrightarrow\dfrac{\left(k+3\right)^2}{\left|k\right|}=4\Leftrightarrow\left(k+3\right)^2=4\left|k\right|\)
\(\Rightarrow\left[{}\begin{matrix}k^2+6k+9=4k\\k^2+6k+9=-4k\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k^2+2k+9=0\left(vn\right)\\k^2+10k+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=-1\\k=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-x-2\\y=-9x+6\end{matrix}\right.\)
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)
\(\Delta:x-y-1=0.\) \(\Rightarrow\) VTPT của \(\Delta\) \(\overrightarrow{n_{\Delta}}=\left(1;-1\right).\)
Đường thẳng \(\left(d\right)\) vuông góc với đường thẳng\(\Delta:x-y-1=0.\)
\(\Rightarrow\) VTPT của \(\Delta\) là VTCP của \(\left(d\right).\)
\(\Rightarrow\) VTCP của \(\left(d\right)\) là \(\overrightarrow{u_{\left(d\right)}}=\left(1;-1\right).\)
\(\Rightarrow\) VTPT của \(\left(d\right)\) là \(\overrightarrow{n_{\left(d\right)}}=\left(-1;1\right).\)Ta có: Đường thẳng \(\left(d\right)\) nhận \(\overrightarrow{n_{\left(d\right)}}=\left(-1;1\right);\) đi qua điểm \(A\left(1;2\right).\)\(\Rightarrow y=-1\left(x-1\right)+1\left(x-2\right).\\ \Leftrightarrow y=-x+1+x-2.\\ \Leftrightarrow y=-1.\)
a, Phương trình đường thẳng song song với \(\Delta\) và đi qua \(M\left(1;\dfrac{1}{2}\right)\) là \(y=\dfrac{1}{2}\)
b, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(3;4\right)\) là \(x=3\)
c, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(-1;2\right)\) là \(y=2\)