Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Định nghĩa: Tỉ lệ thức là một đẳng thức của hai tỉ số = (ĐK b, d ¹ 0).
a, d là ngoại tỉ; b, c là trung tỉ.
- Tính chất: .
- Công thức: Nếu có ad = bc. Chia 2 vế cho tích bd
= Þ = (bd ¹ 0).
- Số hữu tỉ và số vô tỉ được gọi chung là số thực
- Mỗi một điểm trên trục số biểu diễn bởi số thực
- Mỗi một số thực trên trục số được biểu diễn bởi điểm
=> Trục số thực
Đây là Toán lớp 6 mà.
Dạng tổng quát của phân số là a/b ( b khác 0; a,b thuộc Z )
Ví dụ : phân số < 0: 0/1
phân số = 0,1.....>1:1/5
phân số >1:3/2
\(1.\)
Giá trị tuyệt đối của một số hữu tỉ x, kí hiệu là |x|, được xác định như sau:
\(2.\)
+ Nhân hai lũy thừa cùng cơ số :
\(a^m.a^n=a^{m+n}\)
+ Chia hai lũy thừa cùng cơ số :
\(a^m:a^n=a^{m-n}\left(a\ne0;m\ge n\right)\)
+ Lũy thừa của lũy thừa :
\(\left(x^m\right)^n=x^{m.n}\)
+ Lũy thừa của một tích :
\(\left(x.y\right)^n=x^n.y^n\)
+ Lũy thừa của một thương :
\(\left(\frac{x}{y}\right)^n=\frac{x^n}{y^n}\left(y\ne0\right)\)
giao hoán : a+b=c+d suy ra : b+a = d+c
phân phối : a(c+b) = ac+ab
kết hợp :