K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

Ta có: x2yz.(2xy)2z = x2yz.4x2y2.z = 4(x2.x2)(y.y2)(z.z) = 4x4y3z2

15 tháng 4 2018

a. \(\frac{2}{3}\)xy2z.(-3x2y)2

= (\(\frac{2}{3}\). 2 . (-3) . 2 )( xx )(yy)z

=  (-8)x2y2z

Mẫu Bài Trước Bài Sau tương tự

6 tháng 8 2015

a) D = 4x^2 + 4xy + 5xy + 5y^2 - 4x^2 = 5y^2 + 9xy

 

26 tháng 6 2022

D=-xy+5y^2

5 tháng 9 2020

B1:

Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)

Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:

\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)

5 tháng 9 2020

B2:

a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)

Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)

b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)

Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)

6 tháng 3 2020

a) \(A=\left(x-2\right)x^2+3x\left(x-y\right)-8y\left(x+y\right)\)

\(A=x^3-2x^2+3x^2-3xy-8xy-8y^2\)

\(A=x^3+x^2-11xy-8y^2\)

b) Đây không phải là đa thức thuần nhất

19 tháng 3 2022

\(a,A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{1}{2}x^4y^3z^2\)

b, Bậc:9

c, Hệ số: `1/2`

Biến: x4y3z2

d, Thay x=-1, y=-2, z=-3 vào A ta có:
\(A=\dfrac{1}{2}x^4y^3z^2=\dfrac{1}{2}\left(-1\right)^4.\left(-2\right)^3.\left(-3\right)^2=\dfrac{1}{2}.\left(-8\right).9=-36\)

19 tháng 3 2022

a, \(A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{x^4y^5z^2}{2}\)

b, bậc 11 

c, hệ số 1/2 ; biến x^4y^5z^2 

d, Thay x = -1 ; y = -1 ; z = -3 ta được 

\(\dfrac{1.1.9}{2}=\dfrac{9}{2}\)

7 tháng 6 2021

(x+y)^2 + (x-y)^2

= 2(x+y)2

~~Học tốt~~

(x + y)2 + (x - y)2 = (x2+ 2xy + y2) - (x2 - 2xy - y2) = 4xy

# Học tốt #