Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
Bài 1 : Viết các đa thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu
a,8x3+12x2y+6xy2+y3
= (2x)3 + 3.(2x)2.y + 3.2x.y2 + y3
= ( 2x + y )3
b,x3+3x2+3x+1
= x3 + 3.x2.1 + 3.x.12 + 13
=(x + 1)3
c,x3−3x2+2x−1
= x3 - 3.x2.1+ 3.x.12 - 13
= (x - 1)3
d,6
= 33 + 3.32.y2 + 3.3.y4 + (y2)3
= ( 3 + y2 ) 3
cho hỏi lập phương của 1 tổng hay 1 hiệu hay tổng hiệu 2 lập phương vậy
bn viết đề vậy mk cx bí thui haizzzzzz
mk ko hỉu cái đề của bn: Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu ♥
Có phải bằng Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu là yo
\(x^3+12x^2+48x+64=x^3+3.x^2.4+3.x.4^2+4^3=\left(x+4\right)^3\)
\(x^3-6x^2+12x-8=x^3-3.x^2.2+3.x.2^2-2^3=\left(x-2\right)^3\)
a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b) \(27y^3-9y^2+y-\frac{1}{27}=\left(3y-\frac{1}{3}\right)^3\)
c) \(8x^6+12x^4y+6x^2y+y^3=\left(2x^2+y\right)^3\)
d) \(\left(x+y\right)^3\left(x-y\right)^3=\left(x^2-y^2\right)^3\)
e) \(\left(x^2-y^2\right)^2\left(x+y\right)\left(x-y\right)=\left(x^2-y^2\right)^3\)
1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)
4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)
7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)
8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)
10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)
11) \(=\left(x+2\right)^3\)
12) \(=\left(x+3\right)^3\)
a) \(8-12x+6x^2-x^3\)
\(=-x^3+8+6x^2-12x\)
\(=-\left(x^3-2^3\right)+6x\left(x-2\right)\)
\(=-\left(x-2\right)\left(x^2+2x+4\right)+6x\left(x-2\right)\)
\(=\left(x-2\right)\left(-x^2-2x-4+6x\right)\)
\(=\left(x-2\right)\left(-x^2+4x-4\right)\)
\(=-\left(x-2\right)\left(x-2\right)^2\)
\(=-\left(x-2\right)^3\)
b) \(48x+64+x^3+12x^2\)
\(=x^3+3.4.x^2+3.x.4^2+4^3\)
\(=\left(x+4\right)^3\)
c) \(-9y^2+y-\dfrac{1}{27}+27y^3\)
\(=27y^3-9y^2+y-\dfrac{1}{27}\)
\(=\left(3y\right)^3-3.\left(3y\right)^2.\dfrac{1}{3}+3.3y.\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)
\(=\left(3y-\dfrac{1}{3}\right)^3\)
d) \(8x^3+150x-125-60x^2\)
\(=8x^3-60x^2+150x-125\)
\(=\left(2x\right)^3-3.\left(2x\right)^2.5+3.2x.5^2-5^3\)
\(=\left(2x-5\right)^3\)
a, \(8-12x+6x^2-x^3=-\left(x^3-6x^2+12x-8\right)\)
\(=-\left(x^3-2x^2-4x^2+8x+4x-8\right)\)
\(=-\left(x-2\right)^3\)
b, \(48x+64+x^3+12x^2=x^3+4x^2+8x^2+32x+16x+24\)
\(=\left(x+4\right)^3\)
c, \(-9y^2+y-\dfrac{1}{7}+27y^3\)
(sai đề)
d, \(8x^3+150x-125-60x^2=8x^3-20x^2-40x^2+100x+50x-125\)
\(=4x^2\left(2x-5\right)-20x\left(2x-5\right)+25\left(2x-5\right)\)
\(=\left(2x-5\right)\left(4x^2-20x+25\right)=\left(2x-5\right)\left(2x-5\right)^2\)
\(=\left(2x-5\right)^3\)
Chúc bạn học tốt!!!