K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Giải bài 5 trang 49 sgk Hình học 12 | Để học tốt Toán 12

Hai đường thẳng MAB và MCD giao nhau xác định một mặt phẳng (P). Mặt phẳng (P) cắt mặt cầu theo giao tuyến là đường tròn (C), ngoại tiếp tứ giác phẳng ABCD.

Giải bài 5 trang 49 sgk Hình học 12 | Để học tốt Toán 12

Xét ΔMAC và ΔMDB có:

Giải bài 5 trang 49 sgk Hình học 12 | Để học tốt Toán 12

⇒ MA.MB = MC.MD (đpcm).

3 tháng 4 2017

a) Gọi (P) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng (P) cắt mặt cầu S(O;r) theo một đường tròn tâm I, là hình chiếu vuông góc của O lên mặt phẳng (P).

Xét hai tam giác MAD và MCB có góc chung nên hai tam giác đó đồng dạng.

Vì vậy: => MA.MB = MC.MD.

b) Đặt MO = d, ta có Oi vuông góc với (P) và ta có:

MO2= MI2 = OI2 và OA2 = OI2 + IA2

Hạ IH vuông góc AB, ta có H là trung điểm của AB.

Ta có MA = MH - HA; MB = MH + HB = MH + HA.

Nên MA.MB =

MH2 – HA2 = (MH2 + HI2) – (HA2 + IH2)

= MI2 – IA2 = ( MI2 + OI2) – (IA2 + OI2)

= MO2 – OẢ2

= d2 – r2

Vậy MA.MB = d2 – r2


27 tháng 9 2018

Giải bài 6 trang 49 sgk Hình học 12 | Để học tốt Toán 12

* Do mặt cầu S(O; r) tiếp xúc với mp (P) tại I nên: OI ⊥ (P) ⇒ OI ⊥ IA

Suy ra, AI là tiếp tuyến của mặt cầu đã cho tại điểm I.

Ta có AM và AI là hai tiếp tuyến cắt nhau tại A của mặt cầu nên:

AM = AI ( tính chất hai tiếp tuyến cắt nhau)

* Tương tự có BM = BI.

* Xét hai tam giác AMB và tam giác AIB có:

AM = AI

BM = BI

AB chung

Suy ra: ∆ AMB = ∆ AIB ( c.c.c)

Giải bài 6 trang 49 sgk Hình học 12 | Để học tốt Toán 12

 

3 tháng 4 2017

Theo tính chất của mặt cầu, ta có AI và AM là hai tiếp tuyến với cầu kẻ từ A, cho nên AI = AM, tương tự BI =BM. Từ đó hai tam giác ABI và ABM bằng nahau (c.c.c), cho nên các góc tương ứng bằng nhau, tức


22 tháng 7 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2  (1)

Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2  (2)

Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2  (3)

Ta lại có:

AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2  (4)

DC 2 = 4 r 2 - h 2 ,   AB 2 = 4 h 2  (5)

Từ (4) và (5) ta có:

AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2  (6)

Từ (3) và (6) ta có:  AD 2 + BC 2  =  AC 2 + BD 2  (không đổi)

11 tháng 3 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích tam giác BCD bằng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích này lớn nhất khi AI // CD.

22 tháng 5 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng ( α ).

27 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Theo giả thiết ta có: ∠A′M′M = ∠A′AM = ∠A′M1M = 90o

Do đó 5 điểm A, A’, M, M’, M1 cùng thuộc mặt cầu (S) tâm O, với O là trung điểm của A’M và có bán kính r = A′M2

Mặt khác ta có A’M2 = A’A2 + AM2

Trong đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt cầu tâm O có bán kính

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích của mặt cầu tâm O là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta lại có AB′  ⊥  SC nên suy ra AB′ ⊥ (SBC). Do đó AB′  ⊥  B′C

Chứng minh tương tự ta có AD′  ⊥  D′C.

Vậy ∠ ABC =  ∠ AB′C =  ∠ AC′C =  ∠ AD′C =  ∠ ADC = 90 °

Từ đó suy ra 7 điểm A, B, C, D, B’, C’, D’ cùng nằm trên mặt cầu đường kính là AC.

1 tháng 11 2017

 

Chọn A.

Phương pháp:

 

Chỉ ra ba đỉnh H, K, B cùng nhìn cạnh AC dưới một góc vuông. Từ đó suy ra bán kính mặt cầu đi qua 4 điểm A, H, B, K.

Cách giải:

Ta có:

Mà:

Ta thấy:

Nên mặt cầu đi qua bốn đỉnh A; H; B; K nhận AC là đường kính nên bán kính: