K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Abcd +CD + AB= 0

7 tháng 5 2019

A B C D O I H K C'

+) Chứng minh nếu AD // BC thì đường tròn (I) đường kính CD tiếp xúc AB:

Gọi tiếp điểm giữa (O) và CD là H .Từ I hạ IK vuông góc AB tại K.

Khi đó tứ giác KOHI nội tiếp đường tròn (OI) => ^KHI = ^KHD = ^KOI

Dễ thấy tứ giác ABCD là hình thang (Vì BC // AD) có đường trung bình OI nên OI // BC // AD

=> ^KOI = ^KBC. Do đó ^KHD = ^KBC => Tứ giác BKHC nội tiếp. Tương tự, tứ giác ADHK nội tiếp

Từ đó ^DKC = ^DKH + ^CKH = ^DAH + ^CBH. Kết hợp với AD // BC suy ra ^DKC = ^BHA = 900

=> Điểm K thuộc đường tròn (I). Mà AB vuông góc IK tại K nên (I) tiếp xúc AB (*)

+) Chứng minh nếu (I) đường kính CD tiếp xúc với AB thì AD // BC:

Ta gọi tiếp điểm giữa (I) và AB là K, qua K kẻ đường thẳng song song với AH cắt CD tại C'

Lúc này, ^KC'I = ^AHD = ^ABH. Ta có KC' // AH; AH vuông góc BH => KC' vuông góc BH

Do KI vuông góc AB nên ^IKC' = ^ABH. Suy ra ^KC'I = ^IKC' => \(\Delta\)KIC' cân tại I

=> IC' = IK = IC. Mà C và C' nằm cùng phía so với  IK nên C trùng C'.

Từ đây ^KCH = ^AHI = ^KBH => Tứ giác KHCB nội tiếp. Hoàn toàn tương tự, tứ giác AKHD nội tiếp

Vậy thì ^HCB = ^HKA = 1800 - ^ADH => AD // BC (**)

+) Qua (*) và (**), ta thu được ĐPCM.

19 tháng 12 2017

bn tựu vẽ hk nha

a, dễ cm tứ giác ABCD là hình thang

ta có AD//MO//CB(cùng vuông góc vs DC) 

    A0=B0  

từ đây suy ra DM=MC

B, TỪ M KẺ MH VUÔNG GÓC VS AB

TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)

LẠI CÓ GÓC AMO=GÓC MAO( do  MO=AO)  (2)

TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO

                   LẠI CÓ GÓC D=GÓC MHA=90

SUY RA TAM GIAC DMA=TAM GIAC HMA

SUY RA AD=AH

tự BC=HB

TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI

C, TA CÓ MH=DM=MC(CMT)

LẠI CÓ MHVUOONG GÓC VS AB 

SUY RA DƯỜNG TRÒN CD TX VS AB

D, TRONG HT VUÔNG ABCD CÓ DC<=AB

SUY RA  SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)

DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB

28 tháng 3 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là trung điểm của BC

Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)

Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1) và (2) suy ra : IB = IH = R

Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD

AH
Akai Haruma
Giáo viên
7 tháng 6 2021

Lời giải:

Gọi giao của $BO$ và $AC$ là $H$

Vì $BA=BC; OA=OC$ nên $BO$ là trung trực của $AC$

$\Rightarrow BO$ vuông góc với $AC$ tại trung điểm $H$ của $AC$.

Do đó $HO$ là đường trung bình ứng với cạnh $CD$ của tam giác $ACD$

$\Rightarrow HO=2$

$BH=BO-HO=R-2$
Theo định lý Pitago:

$BC^2-BH^2=CH^2=CO^2-HO^2$

$\Leftrightarrow (4\sqrt{3})^2-(R-2)^2=R^2-2^2$

$\Leftrightarrow 48-(R-2)^2=R^2-4$

$\Rightarrow R=6$ (cm)

 

AH
Akai Haruma
Giáo viên
7 tháng 6 2021

Hình vẽ: