Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a﴿ Kẻ BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
: AB = BC ; góc BNA = 180 độ
‐ góc BAD = 70 độ
nên góc BAN = góc BCD = 70 độ
=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿
=> BN = BM => BD là phân giác góc D
b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A
khi đó góc ADB = ﴾180 ‐110) :2= 35 độ
=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD
Và góc BCD = góc ADC = 70 độ
=> ABCD là hình thang cân
a﴿ Kẻ BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
: AB = BC ; góc BNA = 180 độ
‐ góc BAD = 70 độ
nên góc BAN = góc BCD = 70 độ
=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿
=> BN = BM => BD là phân giác góc D
b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A
khi đó góc ADB = ﴾180 ‐110) :2= 35 độ
=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD
Và góc BCD = góc ADC = 70 độ
=> ABCD là hình thang cân
Xét tứ giác ABCD có \(\widehat{B}+\widehat{D}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
\(\widehat{DAC}\) là góc nội tiếp chắn cung DC
mà \(sđ\stackrel\frown{BC}=sđ\stackrel\frown{CD}\)
nên \(\widehat{BAC}=\widehat{DAC}\)
hay AC là tia phân giác của góc A
\(\hept{\begin{cases}\widehat{xAD}+\widehat{BAD}=180\\\widehat{ABC}+\widehat{BAD}=180\end{cases}\Leftrightarrow\widehat{xAD}=\widehat{ABC}\Rightarrow}\)AD//BC (1)
Tổng các góc trong tứ giác là 360
\(\widehat{ABC}+\widehat{BAD}+\widehat{BCD}+\widehat{CDA}=180+\widehat{BCD}+\widehat{CDA}=360\)\(\Rightarrow\widehat{BCD}+\widehat{CDA}=180\)
mặt khác : \(\widehat{ADy}+\widehat{CDA}=180\)\(\Rightarrow\widehat{BCD}=\widehat{yDA}\)=> \(\widehat{yDA}=\widehat{BAD}\)=> AB//CD (2)
từ 1,2 có ABCD là hình bình hành và có đường chéo AC là đường phân giác của \(\widehat{BAD}\)nên ABCD là hình thoi => BC =AD