K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối...
Đọc tiếp

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB

2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối xứng với A qua d, Giả sử góc ACH = góc BCK

  a, Chứng minh rằng kí đó A' , C , B thẳng hàng

  b, Nêu cách dựng điểm C sao cho AC + BC bé nhất

3, Cho tam giác ABC. Dựng hình đối xứng với tam giác đã cho qua trung điểm D của cạnh BC

  a, Tứ giác tạo thành là hình gì

  b, Tính chu vi tứ giác đó biết AB = 10cm, AC = 7cm

4, Cho hình bình hành với E, F lần lượt là trung điểm của AD, BC; G thuộc đoạn AB. Gọi H và I lần lượt là điểm đối xứng của G qua E và F

  a, Chứng minh H, D, C, I thẳng hàng

  b, Chưng minh HI = 2CD

0
8 tháng 1 2022

Xemundefined

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

20 tháng 7 2018

tham khảo Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 8 - Học toán với OnlineMath

21 tháng 7 2018

Thank you nha!

a: Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔBAC

Suy ra: AH\(\perp\)BC

Xét tứ giác BHCD có 

BH//CD

CH//BD

Do đó: BHCD là hình bình hành

b: Ta có: BHCD là hình bình hành

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

hay M,H,D thẳng hàng

Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên EM=BC/2(1)

Ta có: ΔFBC vuông tại F

mà FM là đường trung tuyến

nên FM=BC/2(2)

Từ (1) và (2) suy ra ME=MF

hay ΔEMF cân tại M

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0