Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên AO là trung trực của BC
=>AO vuông góc BC
góc EBC=1/2*180=90 độ
=>EB vuông góc BC
=>AO//EB
b: Xét ΔMAD và ΔMBA co
góc AMD chung
góc MDA=góc MAB
=>ΔMAD đồng dạng với ΔMBA
a: Xét tứ giác ABOC có
góc OBA+góc OCA=180 độ
=>ABOC là tứ giác nội tiếp
b: Xét ΔABE và ΔAFB có
góc ABE=góc AFB
góc BAE chung
=>ΔABE đồng dạng với ΔAFB
=>AB/AF=AE/AB
=>AB^2=AF*AE
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)