Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)
Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp
Trường hợp a=2(b<5):
b có 5 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)
Trường hợp a=1:
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó trường hợp a=1 có 6.5.4.3=360(cách)
Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)
Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi
Gọi số cần lập là \(\overline{abcde}\)
TH1: \(a=1\)
\(\Rightarrow e\) có 4 cách chọn (0;2;4;6)
Bộ bcd có \(A_5^3=60\) cách
\(\Rightarrow4.60=240\) số
TH2: \(a=2\) \(\Rightarrow b< 5\)
- Nếu \(b=\left\{0;4\right\}\) (2 cách) \(\Rightarrow\) e có 1 cách chọn (6)
Bộ cd có \(A_4^2=12\) cách
\(\Rightarrow2.1.12=24\) số
- Nếu \(b=\left\{1;3\right\}\) (2 cách) \(\Rightarrow\) e có 3 cách chọn (0;4;6)
Bộ cd có \(A_4^2=12\) cách
\(\Rightarrow2.3.12=72\) số
Tổng cộng: \(240+24+72=336\) số
Đáp án C
Gọi số cần tìm có dạng
TH1: 2 số lẻ liên tiếp ở vị trí ab
a có 3 cách chọn
b có 2 cách chọn
c có 4 cách chọn
d có 3 cách chọn
e có 2 cách chọn
TH2:2 số lẻ liên tiếp ở vị trí bc
a có 3 cách chọn
b có 3 cách chọn
c có 2 cách chọn
d có 3 cách chọn
e có 2 cách chọn
TH3: 2 số lẻ liên tiếp ở vị trí cd (tượng tự TH2)
Vậy số cách chọn thỏa mãn yêu cầu đề bài là:
3.2.4.3.2+2.(3.3.2.3.2)=360
Gọi số cần lập là \(\overline{abcd}\)
TH1: \(a=1\)
\(\Rightarrow\) Bộ bcd có \(A_6^3=120\) số
TH2: \(a=2\Rightarrow b=0\) \(\Rightarrow c=1\)
d có 4 cách chọn \(\Rightarrow4\) số
\(\Rightarrow120+4=124\) số
Gọi abcde là số có 5 chữ số khác nhau.
a#0=>a có 6 cách chọn
=>b,c,d,e có 6A4 cách chọn
Theo quy tắc nhân có: 6.6A4=2160(số)