Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab (a, b là các chữ số, b > a)
Theo bài ra ta có ba là số nguyên tố.
Và ab + ba là số chính phương.
Ta có \(\overline{ab}+\overline{ba}=11\left(a+b\right)\)
Do ab + ba là số chính phương chia hết cho 11 nên nó chia hết cho 121.
Do ab , ba đều là số có hai chữ số nên ab + ba = 121.
Vậy nên a + b = 11 = 2 + 9 = 3 + 8 = 4 + 7 = 5 + 6
Kết hợp điều kiện b > a và ba là số nguyên tố, ta tìm được số thỏa mãn là 38.
Gọi 2 số chính phương liên tiếp đó là n2 ; (n+1)2
ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)
Không đúng: VD: 25;36 : 25+36 +25.36=71+900 =971 không là số chính phương
Gọi hai số chính phương liên tiếp là k2 và (k+1)2
Ta có:
k2 + (k+1)2 + k2(k+1)2
= k2 + k2 + 2k + 1 +k4 + 2k3 + k2
= k4 + 2k3 + 3k2 + 2k + 1
= (k2+k+1)2
= [k(k+1)+1]2 là số chính phương lẻ.
Gọi 2 số chính phương liên tiếp là a2 và (a + 1)2
Ta có: \(A=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
\(=\left[a\left(a+1\right)\right]^2+2a^2+2a+1\)
\(=\left[a\left(a+1\right)\right]^2+2a\left(a+1\right)+1=\left[a\left(a+1\right)+1\right]^2\)
Ta thấy \(a\left(a+1\right)+1\) là số lẻ nên A là số chính phương lẻ (đpcm)