Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lấy hai điểm A(0;4) và B(2;0) thuộc d. Gọi A′, B′ theo thứ tự là ảnh của A và B qua phép vị tự tâm O tỉ số k = 3. Khi đó ta có
Vì O A → = ( 0 ; 4 ) nên O A ' → = ( 0 ; 12 ) . Do đó A′ = (0;12).
Tương tự B′ = (6;0); d1 chính là đường thẳng A'B' nên nó có phương trình:
b) Có thể giải tương tự như câu a) .
Sau đây ta sẽ giải bằng cách khác.
Vì d 2 / / d nên phương trình của d 2 có dạng 2x + y + C = 0.
Gọi A′ = (x′;y′) là ảnh của A qua phép vị tự đó thì ta có:
I A ' → = − 2 I A → hay x′ + 1 = −2, y′ − 2 = −4
Suy ra x′ = −3, y′ = −2
Do A' thuộc d 2 nên 2.(−3) – 2 + C = 0.
Từ đó suy ra C = 8
Phương trình của d 2 là 2x + y + 8 = 0
Gọi d 1 là ảnh của d qua phép vị tự tâm O tỉ số k = 0,5 thì phương trình của d 1 là x = 2 . Giả sử d' là ảnh của d qua phép quay tâm O góc 45 ο . Lấy M ( 2 ; 0 ) thuộc d 1 thì ảnh của nó qua phép quay tâm O góc 45 ο là M′(1;1) thuộc d'. Vì OM ⊥ d 1 nên OM′ ⊥ d′. Vậy d' là đường thẳng đi qua M' và vuông góc với OM'. Do đó nó có phương trình x + y – 2 = 0.
Ta có A(3;−1) là tâm của (C) nên tâm A' của (C') là ảnh của A qua phép vị tự đã cho. Từ đó suy ra A′ = (−3;8). Vì bán kính của (C) bằng 3, nên bán kính của (C') bằng |−2|.3 = 6
Vậy (C') có phương trình: x + 3 2 + y − 8 2 = 36 .
Phương trình đường thẳng d: 3x + y + 6 = 0
Lấy M(-2;0) thuộc d. Phép vị tự tâm O (0;0) tỉ số k = 2 biến d thành d’//d với d’ có dạng là 3x + y + c = 0 (c 6) và biến M thành M’ thì O M ' → = 2 O M →
⇔ x = 2. − 2 = − 4 y = 2.0 = 0 ⇒ M'(-4; 0)
Vì M thuộc d nên M’ thuộc d’, thay tọa độ M’ vào d’ ta được:
3.(-4) + 0 + c = 0 c = 12 (tm)
Phương trình đường thẳng d’: 3x + y + 12 = 0
Chọn đáp án D