K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2021

d nhận (1;-2) là 1 vtcp

a. d' song song d nên nhận (1;-2) là 1 vtcp

Phương trình d': \(\dfrac{x+5}{1}=\dfrac{y-2}{-2}\)

b. d' vuông góc d nên nhận \(\left(2;1\right)\) là 1 vtcp

Phương trình d': \(\dfrac{x+5}{2}=\dfrac{y-2}{1}\)

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

8 tháng 5 2019

Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)

Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)

Vậy đường thẳng Δ có dạng: x+y-3=0

Vì đường tròn có tâm I thuộc d nên I(a;-a)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì đường tròn đi qua A, B nên I A 2  = I B 2  ⇒ (3 - a ) 2  + a 2  = a 2  + (2 + a ) 2  ⇔ (3 - a ) 2  = (2 + a ) 2

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình đường tròn có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Ta có: 

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Giả sử elip (E) có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì (E) đi qua B nên:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình chính tắc của elip (E) là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

VTCP là (-1;2)

Phương trình chính tắc là: \(\dfrac{x-1}{-1}=\dfrac{y-0}{2}=\dfrac{y}{2}\)

a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+1=0

=>c=-1

=>x-4y-1=0

b: Vì (d) vuông góc x-4y+5=0

nên (d): 4x+y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+4=0

=>c=-4

=>4x+y-4=0

Vì phương trình tham số của (d) là \(\left\{{}\begin{matrix}x=1+t\\y=2-3t\end{matrix}\right.\)

nên (d) đi qua B(1;2) và có vecto chỉ phương là (1;-3)

=>Vecto pháp tuyến là (3;1)

Phương trình tổng quát của (d) là:

3(x-1)+1(y-2)=0

=>3x-3+y-2=0

=>3x+y-5=0

Vì (d') vuông góc với (d) nên (d') có dạng là:

x-3y+c=0

Thay x=2 và y=-1 vào (d'), ta được:

2+3+c=0

hay c=-5

1: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)

2: Vì (d)//y=-3x+2 nên a=-3

Vậy: y=-3x+b

Thay x=3 và y=3 vào y=-3x+b, ta được:

b-9=3

hay b=12

23 tháng 2 2022

sao ngắn v bn @@

NV
7 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt

Phương trình AB:

\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.

Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)

\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)

Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)

9 tháng 1 2021

Δ có vecto pháp tuyến là \(\overrightarrow{n}\) = (1; - 2) và vectochỉ phương

là \(\overrightarrow{u}\) = (2; 1)

a, d ⊥ AB nên d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto pháp tuyến

Phương trình đường thẳng d: 2(x - 1) + (y + 1) = 0

hay 2x + y - 1 = 0

b, Trung điểm M của AB : \(M\left(2;-\dfrac{1}{2}\right)\)

d ⊥ AB nên d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto pháp tuyến

Phương trình đường thẳng d: 2(x - 2) + \(\left(y+\dfrac{1}{2}\right)\) = 0

hay 2x + y \(-\dfrac{7}{2}\) = 0

c, d // Δ nên vecto pháp tuyến của Δ là vecto pháp tuyến của d ⇒ d nhận \(\overrightarrow{n}\) = (1; - 2) làm vecto pháp tuyến

d đi qua B (3; 0)

Phương trình d: 1(x-3) - 2y = 0 hay x - 2y - 3 = 0

d, d đi qua A và B thì d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto chỉ phương ⇒ d nhận (1; -2) làm vecto pháp tuyến

phương trình d: x - 2y - 3 = 0