Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đường thẳng đi qua A là d'.
a) Ta có: \(d'\perp d.\)
\(\Rightarrow\) VTPT của d là VTCP của d'.
Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)
\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)
\(\Rightarrow\) Phương trình đường thẳng d' là:
\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)
b) Ta có: \(d'//d.\)
\(\Rightarrow\) VTPT của d là VTPT của d'.
Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)
\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)
\(\Rightarrow\) Phương trình đường thẳng d' là:
\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)
Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)
Vậy đường thẳng Δ có dạng: x+y-3=0
Vì đường tròn có tâm I thuộc d nên I(a;-a)
Vì đường tròn đi qua A, B nên I A 2 = I B 2 ⇒ (3 - a ) 2 + a 2 = a 2 + (2 + a ) 2 ⇔ (3 - a ) 2 = (2 + a ) 2
Vậy phương trình đường tròn có dạng:
Ta có:
Giả sử elip (E) có dạng:
Vì (E) đi qua B nên:
Mà
Vậy phương trình chính tắc của elip (E) là:
VTCP là (-1;2)
Phương trình chính tắc là: \(\dfrac{x-1}{-1}=\dfrac{y-0}{2}=\dfrac{y}{2}\)
a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0
Thay x=1 và y=0 vào (d), ta được:
c+1=0
=>c=-1
=>x-4y-1=0
b: Vì (d) vuông góc x-4y+5=0
nên (d): 4x+y+c=0
Thay x=1 và y=0 vào (d), ta được:
c+4=0
=>c=-4
=>4x+y-4=0
Vì phương trình tham số của (d) là \(\left\{{}\begin{matrix}x=1+t\\y=2-3t\end{matrix}\right.\)
nên (d) đi qua B(1;2) và có vecto chỉ phương là (1;-3)
=>Vecto pháp tuyến là (3;1)
Phương trình tổng quát của (d) là:
3(x-1)+1(y-2)=0
=>3x-3+y-2=0
=>3x+y-5=0
Vì (d') vuông góc với (d) nên (d') có dạng là:
x-3y+c=0
Thay x=2 và y=-1 vào (d'), ta được:
2+3+c=0
hay c=-5
1: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)
2: Vì (d)//y=-3x+2 nên a=-3
Vậy: y=-3x+b
Thay x=3 và y=3 vào y=-3x+b, ta được:
b-9=3
hay b=12
a.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình AB:
\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.
Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)
\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)
Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)
Δ có vecto pháp tuyến là \(\overrightarrow{n}\) = (1; - 2) và vectochỉ phương
là \(\overrightarrow{u}\) = (2; 1)
a, d ⊥ AB nên d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto pháp tuyến
Phương trình đường thẳng d: 2(x - 1) + (y + 1) = 0
hay 2x + y - 1 = 0
b, Trung điểm M của AB : \(M\left(2;-\dfrac{1}{2}\right)\)
d ⊥ AB nên d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto pháp tuyến
Phương trình đường thẳng d: 2(x - 2) + \(\left(y+\dfrac{1}{2}\right)\) = 0
hay 2x + y \(-\dfrac{7}{2}\) = 0
c, d // Δ nên vecto pháp tuyến của Δ là vecto pháp tuyến của d ⇒ d nhận \(\overrightarrow{n}\) = (1; - 2) làm vecto pháp tuyến
d đi qua B (3; 0)
Phương trình d: 1(x-3) - 2y = 0 hay x - 2y - 3 = 0
d, d đi qua A và B thì d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto chỉ phương ⇒ d nhận (1; -2) làm vecto pháp tuyến
phương trình d: x - 2y - 3 = 0
d nhận (1;-2) là 1 vtcp
a. d' song song d nên nhận (1;-2) là 1 vtcp
Phương trình d': \(\dfrac{x+5}{1}=\dfrac{y-2}{-2}\)
b. d' vuông góc d nên nhận \(\left(2;1\right)\) là 1 vtcp
Phương trình d': \(\dfrac{x+5}{2}=\dfrac{y-2}{1}\)