Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D.
Số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n(Ω)=101x11
Vì x ϵ [0;100];y ϵ [0;10] và x+y ≤90 ⇒ y = 0 → x = 0 ; 1 ; 2 ; . . . ; 90 y = 1 → x = 0 ; 1 ; 2 ; . . . ; 89 . . . y = 10 → x = 0 ; 1 ; 2 ; . . . ; 80
Khi đó có 91 + 90 + … + 81 = 946 cặp (x;y) thỏa mãn.
Vậy xác suất cần tính là P=n(X)/n(Ω)=86/101
Đáp án D.
Số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n Ω = 101 × 11.
Vì x ∈ 0 ; 100 ; y ∈ 0 ; 10 và x + y ≤ 90
⇒ y = 0 → x = 0 ; 1 ; 2 ; ... ; 90 y = 1 → x = 0 ; 1 ; 2 ; ... ; 89 ... y = 10 → x = 0 ; 1 ; 2 ; ... ; 80 .
Khi đó có 91 + 90 + ... + 81 = 946 cặp x ; y thỏa mãn.
Vậy xác suất cần tính là:
P = n ( X ) n Ω = 946 101 × 11 = 86 101 .
Đáp án A
Đường thẳng x + y − 2 = 0 chia hình chữ nhật thành 2 phần như hình vẽ. Xét điểm X 0 ; 1
Số các điểm nguyên không nằm bên ngoài hình chữ nhật là 3.7 = 21 (điểm)
Các điểm có tọa độ thỏa mãn x + y < 2 là các điểm nằm phía bên trái đường thẳng x + y − 2 = 0 , hay cùng phía với X so với đường thẳng x + y − 2 = 0 và không lấy các điểm nằm trên đường thẳng này.
Dễ thấy trường hợp này có 9 điểm thỏa mãn
Vậy xác suất cần tìm là 9 21 = 3 7
Đáp án A
Để con châu chấu đáp xuống các điểm M x , y có x + y < 2 thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA
Để M x , y có tọa độ nguyên thì x ∈ − 2 ; − 1 ; 0 ; 1 ; 2 , y ∈ 0 ; 1 ; 2
Nếu x ∈ − 2 ; − 1 thì y ∈ 0 ; 1 ; 2 ⇒ có 2.3 = 6 điểm
Nếu x = 0 thì y ∈ 0 ; 1 ⇒ có 2 điểm
Nếu x = 1 ⇒ y = 0 ⇒ có 1 điểm
có tất cả 6 + 2 + 1 = 9 điểm. Để con châu chấu nhảy trong hình chữ nhật mà đáp xuống các điểm có tọa độ nguyên thì x ∈ − 2 ; − 1 ; 0 ; 1 ; 2 ; 3 ; 4 , y ∈ 0 ; 1 ; 2 ⇒
Số các điểm M x , y có tọa độ nguyên là: 7.3 = 21 điểm. Xác suất cần tìm là: P = 9 21 = 3 7 .
Đáp án là D