Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.
Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :
M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2 + y 2 − 2 x + 6 y + 6 = 0 .
b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .
Vì I là trung điểm của MM' nên M′ = (4;1)
Vì d' song song với d nên d' có phương trình 3x – y + C = 0.
Lấy một điểm trên d, chẳng hạn N(0; 9).
Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).
Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.
Vậy phương trình của d' là 3x – y – 11 = 0.
Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),
bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).
Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x − 3 2 + y − 1 2 = 4 .
a) d 1 : 3x + 2y + 6 = 0
b) Giao của d và Δ là A(2;0). Lấy B(0; −3) thuộc d. Ảnh của B qua phép đối xứng của đường thẳng Δ là B′(5;2). Khi đó d' chính là đường thẳng AB′: 2x − 3y – 4 = 0
Phép đối xứng trục Oy biến tâm I(3;1) của (C) thành I’(-3;1); bán kính không thay đổi.
Chọn đáp án B.
Gọi giao điểm của d và l là điểm I. Tọa độ điểm I là nghiệm hệ:
x − 2 y + 2 = 0 x − y + 1 = 0 ⇔ x = 0 y = 1 ⇒ I ( 0 ; 1 )
Lấy A(4; 3) thuộc d. Phương trình đường thẳng a qua A và vuông góc với đường thẳng l có vecto chỉ phương là: u a → = n l → = ( 1 ; − 1 ) nên có vecto pháp tuyến là: n a → = ( 1 ; 1 )
Phương trình đường thẳng a: 1( x – 4) + 1.(y – 3) =0 hay x + y – 7 = 0
Gọi H là giao điểm của a và l.Tọa độ H là nghiệm hệ:
x − y + 1 = 0 x + y − 7 = 0 ⇔ x = 3 y = 4 ⇒ H ( 3 ; 4 )
Gọi A’ là điểm đối xứng với A qua H. Khi đó, H là trung điểm của AA’.
Suy ra: x A ' = 2 x H − x A y A ' = 2 y H − y A ⇔ x A ' = 2 y A ' = 5 ⇒ A ' ( 2 ; 5 )
Phương trình đường thẳng IA’: đi qua I(0; 1) và có vecto chỉ phương I A ' → ( 2 ; 4 ) ⇒ n → ( 2 ; − 1 ) . Phương trình IA’:
2( x- 0) - 1(y – 1) = 0 hay 2x – y + 1 = 0 chính là phương trình đường thẳng d’ đối xứng với d qua l.
Đáp án B
Phép đối xứng tâm I(1; 2) biến M(x; y) thành M’(x’; y’) thì:
Thay vào phương trình (C) ta được:
2 - x ' 2 + 4 - y ' 2 + 2 ( 2 - x ' ) - 6 ( 4 - y ' ) + 6 = 0
⇒ x ' 2 + y ' 2 - 6 x ' - 2 y ' + 6 = 0 hay x 2 + y 2 - 6 x - 2 y + 6 = 0
Đáp án A