K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(a=1;b=-3;c=-m^2+1\)

\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9+4m^2-4=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

16 tháng 5 2022

Nguyễn Lê Phước Thịnh                                                         , mk cần bạn làm cái tìm m cơ!!!

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

23 tháng 5 2022

undefined

23 tháng 5 2022

30 tháng 3 2022

undefined

30 tháng 3 2022

Mình tưởng b là -2(m+1) nên b'=-(m+1) vì b=2b' chỗ đen-ta ấy

PTHĐGĐ là:

x^2-(2m+1)x+m^2+m-6=0

Δ=(2m+1)^2-4(m^2+m-6)

=4m^2+4m+1-4m^2-4m+24

=25>0

=>Phương trình luôn có hai nghiệm phân biệt

\(\left|x_1^2-x_2^2\right|=50\)

\(\Leftrightarrow\left|\left(2m+1\right)\right|\cdot\sqrt{\left(2m+1\right)^2-4\left(m^2+m-6\right)}=50\)

\(\Leftrightarrow\left|2m+1\right|\cdot5=50\)

=>|2m+1|=10

=>m=9/2 hoặc m=-11/2

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(\text{Δ}=\left(-3\right)^2-4\left(-m^2+1\right)=4m^2-4+9=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

 

22 tháng 4 2021

Phương trình hoành độ giao điểm là :

\(-x^2=mx+2\)

\(\Leftrightarrow x^2+mx+2=0\)

Lại có : \(\Delta=m^2-8>0\)

Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)

\(\left(x1+1\right)\left(x2+1\right)=0\)

\(\Leftrightarrow x1x2+x1+x1+1=0\)

\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)

 

−x2=mx+2

⇔x2+mx+2=0

chúng ta sẽ lại có : Δ=m2−8>0

Theo định lí Vi - et ta có :

{x1+x2=−mx1x2=2

\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)

⇔x1x2+x1+x1+1=0